import gradio as gr import numpy as np import zipfile from io import BytesIO from PIL import Image def split_image_grid(image, grid_size): # Convert the image to a NumPy array img = np.array(image) width, height = img.shape[1], img.shape[0] grid_width, grid_height = grid_size # Calculate the size of each grid cell cell_width = width // grid_width cell_height = height // grid_height # Split the image into individual frames frames = [] for i in range(grid_height): for j in range(grid_width): left = j * cell_width upper = i * cell_height right = left + cell_width lower = upper + cell_height frame = img[upper:lower, left:right] frames.append(frame) return frames def zip_images(images): # Create a BytesIO object to hold the zip file zip_buffer = BytesIO() with zipfile.ZipFile(zip_buffer, 'w') as zipf: for idx, img in enumerate(images): # Save each image to the zip file img_buffer = BytesIO() img = Image.fromarray(img) # Convert NumPy array to PIL Image img.save(img_buffer, format='PNG') img_buffer.seek(0) zipf.writestr(f'image_{idx}.png', img_buffer.getvalue()) zip_buffer.seek(0) return zip_buffer def process_image(image, grid_size): # Split the image into a grid of frames frames = split_image_grid(image, grid_size) # Zip the frames into a single zip file zip_file = zip_images(frames) return zip_file with gr.Blocks() as demo: with gr.Row(): image_input = gr.Image(label="Input Image") grid_size_input = gr.Slider(1, 10, value=2, step=1, label="Grid Size") zip_output = gr.File(label="Output Zip File") process_button = gr.Button("Process Image") process_button.click(process_image, inputs=[image_input, grid_size_input], outputs=zip_output) demo.launch(show_error=True)