import gradio as gr # from transformers import AutoBackbone, AutoModelForImageClassification, AutoImageProcessor, Swinv2ForImageClassification from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification from torchvision import transforms # model = AutoModelForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") # image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") # image_processor = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") clf = pipeline(model=model, task="image-classification", image_processor=image_processor) class_names = ['artificial', 'real'] def predict_image(img): img = transforms.ToPILImage()(img) img = transforms.Resize((256,256))(img) prediction=clf.predict(img) print(prediction) print(model.config.id2label[predicted_label]) return {class_names[i]: float(prediction[i]["score"]) for i in range(2)} image = gr.Image(label="Image to Analyze", sources=['upload']) label = gr.Label(num_top_classes=2) gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch()