test: ela params
Browse files
app.py
CHANGED
@@ -273,16 +273,17 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
|
|
273 |
img_pil = img
|
274 |
img_pil, results = predict_image(img_pil, confidence_threshold)
|
275 |
img_np = np.array(img_pil) # Convert PIL Image to NumPy array
|
|
|
276 |
|
277 |
gradient_image = gradient_processing(img_np) # Added gradient processing
|
278 |
minmax_image = minmax_preprocess(img_np) # Added MinMax processing
|
279 |
|
280 |
# First pass - standard analysis
|
281 |
-
ela1 = ELA(
|
282 |
|
283 |
# Second pass - enhanced visibility
|
284 |
-
ela2 = ELA(
|
285 |
-
ela3 = ELA(
|
286 |
|
287 |
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image]
|
288 |
|
@@ -320,7 +321,7 @@ with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ ov
|
|
320 |
with gr.Column(scale=2):
|
321 |
# Custom HTML component to display results in 5 columns
|
322 |
results_html = gr.HTML(label="Model Predictions")
|
323 |
-
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[
|
324 |
|
325 |
outputs = [image_output, forensics_gallery, results_html]
|
326 |
|
|
|
273 |
img_pil = img
|
274 |
img_pil, results = predict_image(img_pil, confidence_threshold)
|
275 |
img_np = np.array(img_pil) # Convert PIL Image to NumPy array
|
276 |
+
img_np_og = np.array(img) # Convert PIL Image to NumPy array
|
277 |
|
278 |
gradient_image = gradient_processing(img_np) # Added gradient processing
|
279 |
minmax_image = minmax_preprocess(img_np) # Added MinMax processing
|
280 |
|
281 |
# First pass - standard analysis
|
282 |
+
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
|
283 |
|
284 |
# Second pass - enhanced visibility
|
285 |
+
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
|
286 |
+
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
|
287 |
|
288 |
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image]
|
289 |
|
|
|
321 |
with gr.Column(scale=2):
|
322 |
# Custom HTML component to display results in 5 columns
|
323 |
results_html = gr.HTML(label="Model Predictions")
|
324 |
+
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery")
|
325 |
|
326 |
outputs = [image_output, forensics_gallery, results_html]
|
327 |
|