File size: 1,285 Bytes
93f5629 17c8406 93f5629 a9d7990 433b282 93f5629 a9d7990 f43015f 93f5629 a9d7990 93f5629 a9d7990 f43015f 93f5629 f43015f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
from torchvision import transforms
# Load the model and processor
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
clf = pipeline(model=model, task="image-classification", image_processor=image_processor)
# Define class names
class_names = ['artificial', 'real']
def predict_image(img):
# Convert the image to a PIL Image and resize it
img = transforms.ToPILImage()(img)
img = transforms.Resize((256, 256))(img)
# Get the prediction
prediction = clf(img)
# Process the prediction to match the class names
result = {pred['label']: pred['score'] for pred in prediction}
# Ensure the result dictionary contains both class names
for class_name in class_names:
if class_name not in result:
result[class_name] = 0.0
return result
# Define the Gradio interface
image = gr.Image(label="Image to Analyze", sources=['upload'])
label = gr.Label(num_top_classes=2)
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch() |