import torch import gradio as gr from PIL import Image import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" # model_path = ("../Models/models--Salesforce--blip-image-captioning-large" # "/snapshots/2227ac38c9f16105cb0412e7cab4759978a8fd90") # tts_model_path = ("../Models/models--kakao-enterprise--vits-ljs/snapshots" # "/3bcb8321394f671bd948ebf0d086d694dda95464") # caption_image = pipeline("image-to-text", # model=model_path, device=device) # narrator = pipeline("text-to-speech", # model=tts_model_path) caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") def generate_audio(text): # Generate the narrated text narrated_text = narrator(text) # Save the audio to a WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) # Return the path to the saved audio file return "output.wav" def caption_my_image(pil_image): # Generate the caption semantics = caption_image(images=pil_image)[0]['generated_text'] # Generate the audio for the caption audio_path = generate_audio(semantics) # Return both the caption and the audio return semantics, audio_path # Define the Gradio interface demo = gr.Interface( fn=caption_my_image, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[ gr.Textbox(label="Generated Caption"), gr.Audio(label="Image Caption") ], title="Story Generation From Images", description="THIS APPLICATION WILL BE USED TO GENERATE STORY OF THE IMAGE." ) demo.launch()