Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- embedding_utils.py +90 -69
- run.sh +1 -0
embedding_utils.py
CHANGED
|
@@ -1,20 +1,38 @@
|
|
| 1 |
from typing import List, Tuple
|
| 2 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 3 |
from pymongo import UpdateOne
|
| 4 |
from pymongo.collection import Collection
|
| 5 |
import math
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
text = text.replace("\n", " ")
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def process_batch(docs: List[dict], field_name: str, embedding_field: str, openai_client) -> List[Tuple[str, list]]:
|
| 17 |
"""Process a batch of documents to generate embeddings"""
|
|
|
|
| 18 |
results = []
|
| 19 |
for doc in docs:
|
| 20 |
# Skip if embedding already exists
|
|
@@ -27,6 +45,32 @@ def process_batch(docs: List[dict], field_name: str, embedding_field: str, opena
|
|
| 27 |
results.append((doc["_id"], embedding))
|
| 28 |
return results
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def parallel_generate_embeddings(
|
| 31 |
collection: Collection,
|
| 32 |
cursor,
|
|
@@ -34,89 +78,66 @@ def parallel_generate_embeddings(
|
|
| 34 |
embedding_field: str,
|
| 35 |
openai_client,
|
| 36 |
total_docs: int,
|
| 37 |
-
batch_size: int =
|
| 38 |
callback=None
|
| 39 |
) -> int:
|
| 40 |
-
"""Generate embeddings in parallel using ThreadPoolExecutor with cursor-based batching
|
| 41 |
-
|
| 42 |
-
Args:
|
| 43 |
-
collection: MongoDB collection
|
| 44 |
-
cursor: MongoDB cursor for document iteration
|
| 45 |
-
field_name: Field containing text to embed
|
| 46 |
-
embedding_field: Field to store embeddings
|
| 47 |
-
openai_client: OpenAI client instance
|
| 48 |
-
total_docs: Total number of documents to process
|
| 49 |
-
batch_size: Size of batches for parallel processing
|
| 50 |
-
callback: Optional callback function for progress updates
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
Number of documents processed
|
| 54 |
-
"""
|
| 55 |
if total_docs == 0:
|
| 56 |
return 0
|
| 57 |
|
| 58 |
processed = 0
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
if callback:
|
| 62 |
callback(0, 0, total_docs)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
with ThreadPoolExecutor(max_workers=20) as executor:
|
| 66 |
batch = []
|
| 67 |
futures = []
|
| 68 |
|
| 69 |
-
# Iterate through cursor and build batches
|
| 70 |
for doc in cursor:
|
| 71 |
batch.append(doc)
|
| 72 |
|
| 73 |
-
if len(batch) >=
|
| 74 |
-
|
| 75 |
future = executor.submit(process_batch, batch.copy(), field_name, embedding_field, openai_client)
|
| 76 |
futures.append(future)
|
| 77 |
-
batch = []
|
| 78 |
|
| 79 |
-
# Process completed futures
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
futures = [f for f in futures if not f.done()]
|
| 99 |
|
| 100 |
-
# Process
|
| 101 |
if batch:
|
|
|
|
| 102 |
future = executor.submit(process_batch, batch, field_name, embedding_field, openai_client)
|
| 103 |
futures.append(future)
|
| 104 |
|
| 105 |
-
#
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
collection.bulk_write(bulk_ops)
|
| 115 |
-
processed += len(bulk_ops)
|
| 116 |
-
|
| 117 |
-
# Final progress update
|
| 118 |
-
if callback:
|
| 119 |
-
progress = (processed / total_docs) * 100
|
| 120 |
-
callback(progress, processed, total_docs)
|
| 121 |
-
|
| 122 |
return processed
|
|
|
|
| 1 |
from typing import List, Tuple
|
| 2 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 3 |
from pymongo import UpdateOne
|
| 4 |
from pymongo.collection import Collection
|
| 5 |
import math
|
| 6 |
+
import time
|
| 7 |
+
import logging
|
| 8 |
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
def get_embedding(text: str, openai_client, model="text-embedding-ada-002", max_retries=3) -> list[float]:
|
| 14 |
+
"""Get embeddings for given text using OpenAI API with retry logic"""
|
| 15 |
text = text.replace("\n", " ")
|
| 16 |
+
|
| 17 |
+
for attempt in range(max_retries):
|
| 18 |
+
try:
|
| 19 |
+
resp = openai_client.embeddings.create(
|
| 20 |
+
input=[text],
|
| 21 |
+
model=model
|
| 22 |
+
)
|
| 23 |
+
return resp.data[0].embedding
|
| 24 |
+
except Exception as e:
|
| 25 |
+
if attempt == max_retries - 1:
|
| 26 |
+
raise
|
| 27 |
+
error_details = f"{type(e).__name__}: {str(e)}"
|
| 28 |
+
if hasattr(e, 'response'):
|
| 29 |
+
error_details += f"\nResponse: {e.response.text if hasattr(e.response, 'text') else 'No response text'}"
|
| 30 |
+
logger.warning(f"Embedding API error (attempt {attempt + 1}/{max_retries}):\n{error_details}")
|
| 31 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
| 32 |
|
| 33 |
def process_batch(docs: List[dict], field_name: str, embedding_field: str, openai_client) -> List[Tuple[str, list]]:
|
| 34 |
"""Process a batch of documents to generate embeddings"""
|
| 35 |
+
logger.info(f"Processing batch of {len(docs)} documents")
|
| 36 |
results = []
|
| 37 |
for doc in docs:
|
| 38 |
# Skip if embedding already exists
|
|
|
|
| 45 |
results.append((doc["_id"], embedding))
|
| 46 |
return results
|
| 47 |
|
| 48 |
+
def process_futures(futures: List, collection: Collection, embedding_field: str, processed: int, total_docs: int, callback=None) -> int:
|
| 49 |
+
"""Process completed futures and update progress"""
|
| 50 |
+
completed = 0
|
| 51 |
+
for future in as_completed(futures, timeout=30): # 30 second timeout
|
| 52 |
+
try:
|
| 53 |
+
results = future.result()
|
| 54 |
+
if results:
|
| 55 |
+
bulk_ops = [
|
| 56 |
+
UpdateOne({"_id": doc_id}, {"$set": {embedding_field: embedding}})
|
| 57 |
+
for doc_id, embedding in results
|
| 58 |
+
]
|
| 59 |
+
if bulk_ops:
|
| 60 |
+
collection.bulk_write(bulk_ops)
|
| 61 |
+
completed += len(bulk_ops)
|
| 62 |
+
|
| 63 |
+
# Update progress
|
| 64 |
+
if callback:
|
| 65 |
+
progress = ((processed + completed) / total_docs) * 100
|
| 66 |
+
callback(progress, processed + completed, total_docs)
|
| 67 |
+
except Exception as e:
|
| 68 |
+
error_details = f"{type(e).__name__}: {str(e)}"
|
| 69 |
+
if hasattr(e, 'response'):
|
| 70 |
+
error_details += f"\nResponse: {e.response.text if hasattr(e.response, 'text') else 'No response text'}"
|
| 71 |
+
logger.error(f"Error processing future:\n{error_details}")
|
| 72 |
+
return completed
|
| 73 |
+
|
| 74 |
def parallel_generate_embeddings(
|
| 75 |
collection: Collection,
|
| 76 |
cursor,
|
|
|
|
| 78 |
embedding_field: str,
|
| 79 |
openai_client,
|
| 80 |
total_docs: int,
|
| 81 |
+
batch_size: int = 10, # Reduced initial batch size
|
| 82 |
callback=None
|
| 83 |
) -> int:
|
| 84 |
+
"""Generate embeddings in parallel using ThreadPoolExecutor with cursor-based batching and dynamic processing"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
if total_docs == 0:
|
| 86 |
return 0
|
| 87 |
|
| 88 |
processed = 0
|
| 89 |
+
current_batch_size = batch_size
|
| 90 |
+
max_workers = 5 # Start with fewer workers
|
| 91 |
|
| 92 |
+
logger.info(f"Starting embedding generation for {total_docs} documents")
|
| 93 |
if callback:
|
| 94 |
callback(0, 0, total_docs)
|
| 95 |
|
| 96 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
|
| 97 |
batch = []
|
| 98 |
futures = []
|
| 99 |
|
|
|
|
| 100 |
for doc in cursor:
|
| 101 |
batch.append(doc)
|
| 102 |
|
| 103 |
+
if len(batch) >= current_batch_size:
|
| 104 |
+
logger.info(f"Submitting batch of {len(batch)} documents (batch size: {current_batch_size})")
|
| 105 |
future = executor.submit(process_batch, batch.copy(), field_name, embedding_field, openai_client)
|
| 106 |
futures.append(future)
|
| 107 |
+
batch = []
|
| 108 |
|
| 109 |
+
# Process completed futures more frequently
|
| 110 |
+
if len(futures) >= max_workers:
|
| 111 |
+
try:
|
| 112 |
+
completed = process_futures(futures, collection, embedding_field, processed, total_docs, callback)
|
| 113 |
+
processed += completed
|
| 114 |
+
futures = [] # Clear processed futures
|
| 115 |
+
|
| 116 |
+
# Gradually increase batch size and workers if processing is successful
|
| 117 |
+
if completed > 0:
|
| 118 |
+
current_batch_size = min(current_batch_size + 5, 30)
|
| 119 |
+
max_workers = min(max_workers + 2, 20)
|
| 120 |
+
logger.info(f"Increased batch size to {current_batch_size}, workers to {max_workers}")
|
| 121 |
+
except Exception as e:
|
| 122 |
+
logger.error(f"Error processing futures: {str(e)}")
|
| 123 |
+
# Reduce batch size and workers on error
|
| 124 |
+
current_batch_size = max(5, current_batch_size - 5)
|
| 125 |
+
max_workers = max(3, max_workers - 2)
|
| 126 |
+
logger.info(f"Reduced batch size to {current_batch_size}, workers to {max_workers}")
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Process remaining batch
|
| 129 |
if batch:
|
| 130 |
+
logger.info(f"Processing final batch of {len(batch)} documents")
|
| 131 |
future = executor.submit(process_batch, batch, field_name, embedding_field, openai_client)
|
| 132 |
futures.append(future)
|
| 133 |
|
| 134 |
+
# Process remaining futures
|
| 135 |
+
if futures:
|
| 136 |
+
try:
|
| 137 |
+
completed = process_futures(futures, collection, embedding_field, processed, total_docs, callback)
|
| 138 |
+
processed += completed
|
| 139 |
+
except Exception as e:
|
| 140 |
+
logger.error(f"Error processing final futures: {str(e)}")
|
| 141 |
+
|
| 142 |
+
logger.info(f"Completed embedding generation. Processed {processed}/{total_docs} documents")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
return processed
|
run.sh
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python app.py
|