Upload 7 files
Browse files- embedding_utils.py +90 -69
- run.sh +1 -0
embedding_utils.py
CHANGED
@@ -1,20 +1,38 @@
|
|
1 |
from typing import List, Tuple
|
2 |
-
from concurrent.futures import ThreadPoolExecutor
|
3 |
from pymongo import UpdateOne
|
4 |
from pymongo.collection import Collection
|
5 |
import math
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
text = text.replace("\n", " ")
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def process_batch(docs: List[dict], field_name: str, embedding_field: str, openai_client) -> List[Tuple[str, list]]:
|
17 |
"""Process a batch of documents to generate embeddings"""
|
|
|
18 |
results = []
|
19 |
for doc in docs:
|
20 |
# Skip if embedding already exists
|
@@ -27,6 +45,32 @@ def process_batch(docs: List[dict], field_name: str, embedding_field: str, opena
|
|
27 |
results.append((doc["_id"], embedding))
|
28 |
return results
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def parallel_generate_embeddings(
|
31 |
collection: Collection,
|
32 |
cursor,
|
@@ -34,89 +78,66 @@ def parallel_generate_embeddings(
|
|
34 |
embedding_field: str,
|
35 |
openai_client,
|
36 |
total_docs: int,
|
37 |
-
batch_size: int =
|
38 |
callback=None
|
39 |
) -> int:
|
40 |
-
"""Generate embeddings in parallel using ThreadPoolExecutor with cursor-based batching
|
41 |
-
|
42 |
-
Args:
|
43 |
-
collection: MongoDB collection
|
44 |
-
cursor: MongoDB cursor for document iteration
|
45 |
-
field_name: Field containing text to embed
|
46 |
-
embedding_field: Field to store embeddings
|
47 |
-
openai_client: OpenAI client instance
|
48 |
-
total_docs: Total number of documents to process
|
49 |
-
batch_size: Size of batches for parallel processing
|
50 |
-
callback: Optional callback function for progress updates
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
Number of documents processed
|
54 |
-
"""
|
55 |
if total_docs == 0:
|
56 |
return 0
|
57 |
|
58 |
processed = 0
|
|
|
|
|
59 |
|
60 |
-
|
61 |
if callback:
|
62 |
callback(0, 0, total_docs)
|
63 |
|
64 |
-
|
65 |
-
with ThreadPoolExecutor(max_workers=20) as executor:
|
66 |
batch = []
|
67 |
futures = []
|
68 |
|
69 |
-
# Iterate through cursor and build batches
|
70 |
for doc in cursor:
|
71 |
batch.append(doc)
|
72 |
|
73 |
-
if len(batch) >=
|
74 |
-
|
75 |
future = executor.submit(process_batch, batch.copy(), field_name, embedding_field, openai_client)
|
76 |
futures.append(future)
|
77 |
-
batch = []
|
78 |
|
79 |
-
# Process completed futures
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
futures = [f for f in futures if not f.done()]
|
99 |
|
100 |
-
# Process
|
101 |
if batch:
|
|
|
102 |
future = executor.submit(process_batch, batch, field_name, embedding_field, openai_client)
|
103 |
futures.append(future)
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
collection.bulk_write(bulk_ops)
|
115 |
-
processed += len(bulk_ops)
|
116 |
-
|
117 |
-
# Final progress update
|
118 |
-
if callback:
|
119 |
-
progress = (processed / total_docs) * 100
|
120 |
-
callback(progress, processed, total_docs)
|
121 |
-
|
122 |
return processed
|
|
|
1 |
from typing import List, Tuple
|
2 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
from pymongo import UpdateOne
|
4 |
from pymongo.collection import Collection
|
5 |
import math
|
6 |
+
import time
|
7 |
+
import logging
|
8 |
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
def get_embedding(text: str, openai_client, model="text-embedding-ada-002", max_retries=3) -> list[float]:
|
14 |
+
"""Get embeddings for given text using OpenAI API with retry logic"""
|
15 |
text = text.replace("\n", " ")
|
16 |
+
|
17 |
+
for attempt in range(max_retries):
|
18 |
+
try:
|
19 |
+
resp = openai_client.embeddings.create(
|
20 |
+
input=[text],
|
21 |
+
model=model
|
22 |
+
)
|
23 |
+
return resp.data[0].embedding
|
24 |
+
except Exception as e:
|
25 |
+
if attempt == max_retries - 1:
|
26 |
+
raise
|
27 |
+
error_details = f"{type(e).__name__}: {str(e)}"
|
28 |
+
if hasattr(e, 'response'):
|
29 |
+
error_details += f"\nResponse: {e.response.text if hasattr(e.response, 'text') else 'No response text'}"
|
30 |
+
logger.warning(f"Embedding API error (attempt {attempt + 1}/{max_retries}):\n{error_details}")
|
31 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
32 |
|
33 |
def process_batch(docs: List[dict], field_name: str, embedding_field: str, openai_client) -> List[Tuple[str, list]]:
|
34 |
"""Process a batch of documents to generate embeddings"""
|
35 |
+
logger.info(f"Processing batch of {len(docs)} documents")
|
36 |
results = []
|
37 |
for doc in docs:
|
38 |
# Skip if embedding already exists
|
|
|
45 |
results.append((doc["_id"], embedding))
|
46 |
return results
|
47 |
|
48 |
+
def process_futures(futures: List, collection: Collection, embedding_field: str, processed: int, total_docs: int, callback=None) -> int:
|
49 |
+
"""Process completed futures and update progress"""
|
50 |
+
completed = 0
|
51 |
+
for future in as_completed(futures, timeout=30): # 30 second timeout
|
52 |
+
try:
|
53 |
+
results = future.result()
|
54 |
+
if results:
|
55 |
+
bulk_ops = [
|
56 |
+
UpdateOne({"_id": doc_id}, {"$set": {embedding_field: embedding}})
|
57 |
+
for doc_id, embedding in results
|
58 |
+
]
|
59 |
+
if bulk_ops:
|
60 |
+
collection.bulk_write(bulk_ops)
|
61 |
+
completed += len(bulk_ops)
|
62 |
+
|
63 |
+
# Update progress
|
64 |
+
if callback:
|
65 |
+
progress = ((processed + completed) / total_docs) * 100
|
66 |
+
callback(progress, processed + completed, total_docs)
|
67 |
+
except Exception as e:
|
68 |
+
error_details = f"{type(e).__name__}: {str(e)}"
|
69 |
+
if hasattr(e, 'response'):
|
70 |
+
error_details += f"\nResponse: {e.response.text if hasattr(e.response, 'text') else 'No response text'}"
|
71 |
+
logger.error(f"Error processing future:\n{error_details}")
|
72 |
+
return completed
|
73 |
+
|
74 |
def parallel_generate_embeddings(
|
75 |
collection: Collection,
|
76 |
cursor,
|
|
|
78 |
embedding_field: str,
|
79 |
openai_client,
|
80 |
total_docs: int,
|
81 |
+
batch_size: int = 10, # Reduced initial batch size
|
82 |
callback=None
|
83 |
) -> int:
|
84 |
+
"""Generate embeddings in parallel using ThreadPoolExecutor with cursor-based batching and dynamic processing"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
if total_docs == 0:
|
86 |
return 0
|
87 |
|
88 |
processed = 0
|
89 |
+
current_batch_size = batch_size
|
90 |
+
max_workers = 5 # Start with fewer workers
|
91 |
|
92 |
+
logger.info(f"Starting embedding generation for {total_docs} documents")
|
93 |
if callback:
|
94 |
callback(0, 0, total_docs)
|
95 |
|
96 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
97 |
batch = []
|
98 |
futures = []
|
99 |
|
|
|
100 |
for doc in cursor:
|
101 |
batch.append(doc)
|
102 |
|
103 |
+
if len(batch) >= current_batch_size:
|
104 |
+
logger.info(f"Submitting batch of {len(batch)} documents (batch size: {current_batch_size})")
|
105 |
future = executor.submit(process_batch, batch.copy(), field_name, embedding_field, openai_client)
|
106 |
futures.append(future)
|
107 |
+
batch = []
|
108 |
|
109 |
+
# Process completed futures more frequently
|
110 |
+
if len(futures) >= max_workers:
|
111 |
+
try:
|
112 |
+
completed = process_futures(futures, collection, embedding_field, processed, total_docs, callback)
|
113 |
+
processed += completed
|
114 |
+
futures = [] # Clear processed futures
|
115 |
+
|
116 |
+
# Gradually increase batch size and workers if processing is successful
|
117 |
+
if completed > 0:
|
118 |
+
current_batch_size = min(current_batch_size + 5, 30)
|
119 |
+
max_workers = min(max_workers + 2, 20)
|
120 |
+
logger.info(f"Increased batch size to {current_batch_size}, workers to {max_workers}")
|
121 |
+
except Exception as e:
|
122 |
+
logger.error(f"Error processing futures: {str(e)}")
|
123 |
+
# Reduce batch size and workers on error
|
124 |
+
current_batch_size = max(5, current_batch_size - 5)
|
125 |
+
max_workers = max(3, max_workers - 2)
|
126 |
+
logger.info(f"Reduced batch size to {current_batch_size}, workers to {max_workers}")
|
|
|
|
|
127 |
|
128 |
+
# Process remaining batch
|
129 |
if batch:
|
130 |
+
logger.info(f"Processing final batch of {len(batch)} documents")
|
131 |
future = executor.submit(process_batch, batch, field_name, embedding_field, openai_client)
|
132 |
futures.append(future)
|
133 |
|
134 |
+
# Process remaining futures
|
135 |
+
if futures:
|
136 |
+
try:
|
137 |
+
completed = process_futures(futures, collection, embedding_field, processed, total_docs, callback)
|
138 |
+
processed += completed
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Error processing final futures: {str(e)}")
|
141 |
+
|
142 |
+
logger.info(f"Completed embedding generation. Processed {processed}/{total_docs} documents")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
return processed
|
run.sh
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python app.py
|