Upload 3 files
Browse files- ui/__init__.py +8 -0
- ui/embeddings_tab.py +192 -0
- ui/search_tab.py +142 -0
ui/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# UI package for MongoDB Vector Search Tool
|
2 |
+
from ui.embeddings_tab import create_embeddings_tab
|
3 |
+
from ui.search_tab import create_search_tab
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'create_embeddings_tab',
|
7 |
+
'create_search_tab'
|
8 |
+
]
|
ui/embeddings_tab.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import Tuple, Optional, List
|
3 |
+
from openai import OpenAI
|
4 |
+
from utils.db_utils import DatabaseUtils
|
5 |
+
from utils.embedding_utils import parallel_generate_embeddings
|
6 |
+
|
7 |
+
def create_embeddings_tab(openai_client: OpenAI, db_utils: DatabaseUtils, databases: List[str]) -> Tuple[gr.Tab, dict]:
|
8 |
+
"""Create the embeddings generation tab UI
|
9 |
+
|
10 |
+
Args:
|
11 |
+
openai_client: OpenAI client instance
|
12 |
+
db_utils: DatabaseUtils instance
|
13 |
+
databases: List of available databases
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
Tuple[gr.Tab, dict]: The tab component and its interface elements
|
17 |
+
"""
|
18 |
+
def update_collections(db_name: str) -> gr.Dropdown:
|
19 |
+
"""Update collections dropdown when database changes"""
|
20 |
+
collections = db_utils.get_collections(db_name)
|
21 |
+
# If there's only one collection, select it by default
|
22 |
+
value = collections[0] if len(collections) == 1 else None
|
23 |
+
return gr.Dropdown(choices=collections, value=value)
|
24 |
+
|
25 |
+
def update_fields(db_name: str, collection_name: str) -> gr.Dropdown:
|
26 |
+
"""Update fields dropdown when collection changes"""
|
27 |
+
if db_name and collection_name:
|
28 |
+
fields = db_utils.get_field_names(db_name, collection_name)
|
29 |
+
return gr.Dropdown(choices=fields)
|
30 |
+
return gr.Dropdown(choices=[])
|
31 |
+
|
32 |
+
def generate_embeddings(
|
33 |
+
db_name: str,
|
34 |
+
collection_name: str,
|
35 |
+
field_name: str,
|
36 |
+
embedding_field: str,
|
37 |
+
limit: int = 10,
|
38 |
+
progress=gr.Progress()
|
39 |
+
) -> Tuple[str, str]:
|
40 |
+
"""Generate embeddings for documents with progress tracking"""
|
41 |
+
try:
|
42 |
+
db = db_utils.client[db_name]
|
43 |
+
collection = db[collection_name]
|
44 |
+
|
45 |
+
# Count documents that need embeddings
|
46 |
+
total_docs = collection.count_documents({field_name: {"$exists": True}})
|
47 |
+
if total_docs == 0:
|
48 |
+
return f"No documents found with field '{field_name}'", ""
|
49 |
+
|
50 |
+
# Get total count of documents that need processing
|
51 |
+
query = {
|
52 |
+
field_name: {"$exists": True},
|
53 |
+
embedding_field: {"$exists": False} # Only get docs without embeddings
|
54 |
+
}
|
55 |
+
total_to_process = collection.count_documents(query)
|
56 |
+
if total_to_process == 0:
|
57 |
+
return "No documents found that need embeddings", ""
|
58 |
+
|
59 |
+
# Apply limit if specified
|
60 |
+
if limit > 0:
|
61 |
+
total_to_process = min(total_to_process, limit)
|
62 |
+
|
63 |
+
print(f"\nFound {total_to_process} documents that need embeddings...")
|
64 |
+
|
65 |
+
# Progress tracking
|
66 |
+
progress_text = ""
|
67 |
+
def update_progress(prog: float, processed: int, total: int):
|
68 |
+
nonlocal progress_text
|
69 |
+
progress_text = f"Progress: {prog:.1f}% ({processed}/{total} documents)\n"
|
70 |
+
print(progress_text) # Terminal logging
|
71 |
+
progress(prog/100, f"Processed {processed}/{total} documents")
|
72 |
+
|
73 |
+
# Show initial progress
|
74 |
+
update_progress(0, 0, total_to_process)
|
75 |
+
|
76 |
+
# Create cursor for batch processing
|
77 |
+
cursor = collection.find(query)
|
78 |
+
if limit > 0:
|
79 |
+
cursor = cursor.limit(limit)
|
80 |
+
|
81 |
+
# Generate embeddings in parallel with cursor-based batching
|
82 |
+
processed = parallel_generate_embeddings(
|
83 |
+
collection=collection,
|
84 |
+
cursor=cursor,
|
85 |
+
field_name=field_name,
|
86 |
+
embedding_field=embedding_field,
|
87 |
+
openai_client=openai_client,
|
88 |
+
total_docs=total_to_process,
|
89 |
+
callback=update_progress
|
90 |
+
)
|
91 |
+
|
92 |
+
# Return completion message and final progress
|
93 |
+
instructions = f"""
|
94 |
+
Successfully generated embeddings for {processed} documents using parallel processing!
|
95 |
+
|
96 |
+
To create the vector search index in MongoDB Atlas:
|
97 |
+
1. Go to your Atlas cluster
|
98 |
+
2. Click on 'Search' tab
|
99 |
+
3. Create an index named 'vector_index' with this configuration:
|
100 |
+
{{
|
101 |
+
"fields": [
|
102 |
+
{{
|
103 |
+
"type": "vector",
|
104 |
+
"path": "{embedding_field}",
|
105 |
+
"numDimensions": 1536,
|
106 |
+
"similarity": "dotProduct"
|
107 |
+
}}
|
108 |
+
]
|
109 |
+
}}
|
110 |
+
|
111 |
+
You can now use the search tab with:
|
112 |
+
- Field to search: {field_name}
|
113 |
+
- Embedding field: {embedding_field}
|
114 |
+
"""
|
115 |
+
return instructions, progress_text
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
return f"Error: {str(e)}", ""
|
119 |
+
|
120 |
+
# Create the tab UI
|
121 |
+
with gr.Tab("Generate Embeddings") as tab:
|
122 |
+
with gr.Row():
|
123 |
+
db_input = gr.Dropdown(
|
124 |
+
choices=databases,
|
125 |
+
label="Select Database",
|
126 |
+
info="Available databases in Atlas cluster"
|
127 |
+
)
|
128 |
+
collection_input = gr.Dropdown(
|
129 |
+
choices=[],
|
130 |
+
label="Select Collection",
|
131 |
+
info="Collections in selected database"
|
132 |
+
)
|
133 |
+
with gr.Row():
|
134 |
+
field_input = gr.Dropdown(
|
135 |
+
choices=[],
|
136 |
+
label="Select Field for Embeddings",
|
137 |
+
info="Fields available in collection"
|
138 |
+
)
|
139 |
+
embedding_field_input = gr.Textbox(
|
140 |
+
label="Embedding Field Name",
|
141 |
+
value="embedding",
|
142 |
+
info="Field name where embeddings will be stored"
|
143 |
+
)
|
144 |
+
limit_input = gr.Number(
|
145 |
+
label="Document Limit",
|
146 |
+
value=10,
|
147 |
+
minimum=0,
|
148 |
+
info="Number of documents to process (0 for all documents)"
|
149 |
+
)
|
150 |
+
|
151 |
+
generate_btn = gr.Button("Generate Embeddings")
|
152 |
+
generate_output = gr.Textbox(label="Results", lines=10)
|
153 |
+
progress_output = gr.Textbox(label="Progress", lines=3)
|
154 |
+
|
155 |
+
# Set up event handlers
|
156 |
+
db_input.change(
|
157 |
+
fn=update_collections,
|
158 |
+
inputs=[db_input],
|
159 |
+
outputs=[collection_input]
|
160 |
+
)
|
161 |
+
|
162 |
+
collection_input.change(
|
163 |
+
fn=update_fields,
|
164 |
+
inputs=[db_input, collection_input],
|
165 |
+
outputs=[field_input]
|
166 |
+
)
|
167 |
+
|
168 |
+
generate_btn.click(
|
169 |
+
fn=generate_embeddings,
|
170 |
+
inputs=[
|
171 |
+
db_input,
|
172 |
+
collection_input,
|
173 |
+
field_input,
|
174 |
+
embedding_field_input,
|
175 |
+
limit_input
|
176 |
+
],
|
177 |
+
outputs=[generate_output, progress_output]
|
178 |
+
)
|
179 |
+
|
180 |
+
# Return the tab and its interface elements
|
181 |
+
interface = {
|
182 |
+
'db_input': db_input,
|
183 |
+
'collection_input': collection_input,
|
184 |
+
'field_input': field_input,
|
185 |
+
'embedding_field_input': embedding_field_input,
|
186 |
+
'limit_input': limit_input,
|
187 |
+
'generate_btn': generate_btn,
|
188 |
+
'generate_output': generate_output,
|
189 |
+
'progress_output': progress_output
|
190 |
+
}
|
191 |
+
|
192 |
+
return tab, interface
|
ui/search_tab.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import Tuple, List
|
3 |
+
from openai import OpenAI
|
4 |
+
from utils.db_utils import DatabaseUtils
|
5 |
+
from utils.embedding_utils import get_embedding
|
6 |
+
|
7 |
+
def create_search_tab(openai_client: OpenAI, db_utils: DatabaseUtils, databases: List[str]) -> Tuple[gr.Tab, dict]:
|
8 |
+
"""Create the vector search tab UI
|
9 |
+
|
10 |
+
Args:
|
11 |
+
openai_client: OpenAI client instance
|
12 |
+
db_utils: DatabaseUtils instance
|
13 |
+
databases: List of available databases
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
Tuple[gr.Tab, dict]: The tab component and its interface elements
|
17 |
+
"""
|
18 |
+
def update_collections(db_name: str) -> gr.Dropdown:
|
19 |
+
"""Update collections dropdown when database changes"""
|
20 |
+
collections = db_utils.get_collections(db_name)
|
21 |
+
# If there's only one collection, select it by default
|
22 |
+
value = collections[0] if len(collections) == 1 else None
|
23 |
+
return gr.Dropdown(choices=collections, value=value)
|
24 |
+
|
25 |
+
def vector_search(
|
26 |
+
query_text: str,
|
27 |
+
db_name: str,
|
28 |
+
collection_name: str,
|
29 |
+
embedding_field: str,
|
30 |
+
index_name: str
|
31 |
+
) -> str:
|
32 |
+
"""Perform vector search using embeddings"""
|
33 |
+
try:
|
34 |
+
print(f"\nProcessing query: {query_text}")
|
35 |
+
|
36 |
+
db = db_utils.client[db_name]
|
37 |
+
collection = db[collection_name]
|
38 |
+
|
39 |
+
# Get embeddings for query
|
40 |
+
embedding = get_embedding(query_text, openai_client)
|
41 |
+
print("Generated embeddings successfully")
|
42 |
+
|
43 |
+
results = collection.aggregate([
|
44 |
+
{
|
45 |
+
'$vectorSearch': {
|
46 |
+
"index": index_name,
|
47 |
+
"path": embedding_field,
|
48 |
+
"queryVector": embedding,
|
49 |
+
"numCandidates": 50,
|
50 |
+
"limit": 5
|
51 |
+
}
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"$project": {
|
55 |
+
"search_score": { "$meta": "vectorSearchScore" },
|
56 |
+
"document": "$$ROOT"
|
57 |
+
}
|
58 |
+
}
|
59 |
+
])
|
60 |
+
|
61 |
+
# Format results
|
62 |
+
results_list = list(results)
|
63 |
+
formatted_results = []
|
64 |
+
|
65 |
+
for idx, result in enumerate(results_list, 1):
|
66 |
+
doc = result['document']
|
67 |
+
formatted_result = f"{idx}. Score: {result['search_score']:.4f}\n"
|
68 |
+
# Add all fields except _id and embeddings
|
69 |
+
for key, value in doc.items():
|
70 |
+
if key not in ['_id', embedding_field]:
|
71 |
+
formatted_result += f"{key}: {value}\n"
|
72 |
+
formatted_results.append(formatted_result)
|
73 |
+
|
74 |
+
return "\n".join(formatted_results) if formatted_results else "No results found"
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
return f"Error: {str(e)}"
|
78 |
+
|
79 |
+
# Create the tab UI
|
80 |
+
with gr.Tab("Search") as tab:
|
81 |
+
with gr.Row():
|
82 |
+
db_input = gr.Dropdown(
|
83 |
+
choices=databases,
|
84 |
+
label="Select Database",
|
85 |
+
info="Database containing the vectors"
|
86 |
+
)
|
87 |
+
collection_input = gr.Dropdown(
|
88 |
+
choices=[],
|
89 |
+
label="Select Collection",
|
90 |
+
info="Collection containing the vectors"
|
91 |
+
)
|
92 |
+
with gr.Row():
|
93 |
+
embedding_field_input = gr.Textbox(
|
94 |
+
label="Embedding Field Name",
|
95 |
+
value="embedding",
|
96 |
+
info="Field containing the vectors"
|
97 |
+
)
|
98 |
+
index_input = gr.Textbox(
|
99 |
+
label="Vector Search Index Name",
|
100 |
+
value="vector_index",
|
101 |
+
info="Index created in Atlas UI"
|
102 |
+
)
|
103 |
+
|
104 |
+
query_input = gr.Textbox(
|
105 |
+
label="Search Query",
|
106 |
+
lines=2,
|
107 |
+
placeholder="What would you like to search for?"
|
108 |
+
)
|
109 |
+
search_btn = gr.Button("Search")
|
110 |
+
search_output = gr.Textbox(label="Results", lines=10)
|
111 |
+
|
112 |
+
# Set up event handlers
|
113 |
+
db_input.change(
|
114 |
+
fn=update_collections,
|
115 |
+
inputs=[db_input],
|
116 |
+
outputs=[collection_input]
|
117 |
+
)
|
118 |
+
|
119 |
+
search_btn.click(
|
120 |
+
fn=vector_search,
|
121 |
+
inputs=[
|
122 |
+
query_input,
|
123 |
+
db_input,
|
124 |
+
collection_input,
|
125 |
+
embedding_field_input,
|
126 |
+
index_input
|
127 |
+
],
|
128 |
+
outputs=search_output
|
129 |
+
)
|
130 |
+
|
131 |
+
# Return the tab and its interface elements
|
132 |
+
interface = {
|
133 |
+
'db_input': db_input,
|
134 |
+
'collection_input': collection_input,
|
135 |
+
'embedding_field_input': embedding_field_input,
|
136 |
+
'index_input': index_input,
|
137 |
+
'query_input': query_input,
|
138 |
+
'search_btn': search_btn,
|
139 |
+
'search_output': search_output
|
140 |
+
}
|
141 |
+
|
142 |
+
return tab, interface
|