|
import gradio as gr |
|
from typing import Tuple, Optional, List |
|
from openai import OpenAI |
|
from utils.db_utils import DatabaseUtils |
|
from utils.embedding_utils import parallel_generate_embeddings |
|
|
|
def create_embeddings_tab(openai_client: OpenAI, db_utils: DatabaseUtils, databases: List[str]) -> Tuple[gr.Tab, dict]: |
|
"""Create the embeddings generation tab UI |
|
|
|
Args: |
|
openai_client: OpenAI client instance |
|
db_utils: DatabaseUtils instance |
|
databases: List of available databases |
|
|
|
Returns: |
|
Tuple[gr.Tab, dict]: The tab component and its interface elements |
|
""" |
|
def update_collections(db_name: str) -> gr.Dropdown: |
|
"""Update collections dropdown when database changes""" |
|
collections = db_utils.get_collections(db_name) |
|
|
|
value = collections[0] if len(collections) == 1 else None |
|
return gr.Dropdown(choices=collections, value=value) |
|
|
|
def update_fields(db_name: str, collection_name: str) -> gr.Dropdown: |
|
"""Update fields dropdown when collection changes""" |
|
if db_name and collection_name: |
|
fields = db_utils.get_field_names(db_name, collection_name) |
|
return gr.Dropdown(choices=fields) |
|
return gr.Dropdown(choices=[]) |
|
|
|
def generate_embeddings( |
|
db_name: str, |
|
collection_name: str, |
|
field_name: str, |
|
embedding_field: str, |
|
limit: int = 10, |
|
progress=gr.Progress() |
|
) -> Tuple[str, str]: |
|
"""Generate embeddings for documents with progress tracking""" |
|
try: |
|
db = db_utils.client[db_name] |
|
collection = db[collection_name] |
|
|
|
|
|
total_docs = collection.count_documents({field_name: {"$exists": True}}) |
|
if total_docs == 0: |
|
return f"No documents found with field '{field_name}'", "" |
|
|
|
|
|
query = { |
|
field_name: {"$exists": True}, |
|
embedding_field: {"$exists": False} |
|
} |
|
total_to_process = collection.count_documents(query) |
|
if total_to_process == 0: |
|
return "No documents found that need embeddings", "" |
|
|
|
|
|
if limit > 0: |
|
total_to_process = min(total_to_process, limit) |
|
|
|
print(f"\nFound {total_to_process} documents that need embeddings...") |
|
|
|
|
|
progress_text = "" |
|
def update_progress(prog: float, processed: int, total: int): |
|
nonlocal progress_text |
|
progress_text = f"Progress: {prog:.1f}% ({processed}/{total} documents)\n" |
|
print(progress_text) |
|
progress(prog/100, f"Processed {processed}/{total} documents") |
|
|
|
|
|
update_progress(0, 0, total_to_process) |
|
|
|
|
|
cursor = collection.find(query) |
|
if limit > 0: |
|
cursor = cursor.limit(limit) |
|
|
|
|
|
processed = parallel_generate_embeddings( |
|
collection=collection, |
|
cursor=cursor, |
|
field_name=field_name, |
|
embedding_field=embedding_field, |
|
openai_client=openai_client, |
|
total_docs=total_to_process, |
|
callback=update_progress |
|
) |
|
|
|
|
|
instructions = f""" |
|
Successfully generated embeddings for {processed} documents using parallel processing! |
|
|
|
To create the vector search index in MongoDB Atlas: |
|
1. Go to your Atlas cluster |
|
2. Click on 'Search' tab |
|
3. Create an index named 'vector_index' with this configuration: |
|
{{ |
|
"fields": [ |
|
{{ |
|
"type": "vector", |
|
"path": "{embedding_field}", |
|
"numDimensions": 1536, |
|
"similarity": "dotProduct" |
|
}} |
|
] |
|
}} |
|
|
|
You can now use the search tab with: |
|
- Field to search: {field_name} |
|
- Embedding field: {embedding_field} |
|
""" |
|
return instructions, progress_text |
|
|
|
except Exception as e: |
|
return f"Error: {str(e)}", "" |
|
|
|
|
|
with gr.Tab("Generate Embeddings") as tab: |
|
with gr.Row(): |
|
db_input = gr.Dropdown( |
|
choices=databases, |
|
label="Select Database", |
|
info="Available databases in Atlas cluster" |
|
) |
|
collection_input = gr.Dropdown( |
|
choices=[], |
|
label="Select Collection", |
|
info="Collections in selected database" |
|
) |
|
with gr.Row(): |
|
field_input = gr.Dropdown( |
|
choices=[], |
|
label="Select Field for Embeddings", |
|
info="Fields available in collection" |
|
) |
|
embedding_field_input = gr.Textbox( |
|
label="Embedding Field Name", |
|
value="embedding", |
|
info="Field name where embeddings will be stored" |
|
) |
|
limit_input = gr.Number( |
|
label="Document Limit", |
|
value=10, |
|
minimum=0, |
|
info="Number of documents to process (0 for all documents)" |
|
) |
|
|
|
generate_btn = gr.Button("Generate Embeddings") |
|
generate_output = gr.Textbox(label="Results", lines=10) |
|
progress_output = gr.Textbox(label="Progress", lines=3) |
|
|
|
|
|
db_input.change( |
|
fn=update_collections, |
|
inputs=[db_input], |
|
outputs=[collection_input] |
|
) |
|
|
|
collection_input.change( |
|
fn=update_fields, |
|
inputs=[db_input, collection_input], |
|
outputs=[field_input] |
|
) |
|
|
|
generate_btn.click( |
|
fn=generate_embeddings, |
|
inputs=[ |
|
db_input, |
|
collection_input, |
|
field_input, |
|
embedding_field_input, |
|
limit_input |
|
], |
|
outputs=[generate_output, progress_output] |
|
) |
|
|
|
|
|
interface = { |
|
'db_input': db_input, |
|
'collection_input': collection_input, |
|
'field_input': field_input, |
|
'embedding_field_input': embedding_field_input, |
|
'limit_input': limit_input, |
|
'generate_btn': generate_btn, |
|
'generate_output': generate_output, |
|
'progress_output': progress_output |
|
} |
|
|
|
return tab, interface |
|
|