Spaces:
Sleeping
Sleeping
File size: 9,752 Bytes
8fb6e2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os
import gradio as gr
from openai import OpenAI
import json
from dotenv import load_dotenv
from db_utils import DatabaseUtils
from embedding_utils import parallel_generate_embeddings, get_embedding
# Load environment variables from .env file
load_dotenv()
# Initialize OpenAI client
openai_client = OpenAI()
# Initialize database utils
db_utils = DatabaseUtils()
def get_field_names(db_name: str, collection_name: str) -> list[str]:
"""Get list of fields in the collection"""
return db_utils.get_field_names(db_name, collection_name)
def generate_embeddings_for_field(db_name: str, collection_name: str, field_name: str, embedding_field: str, limit: int = 10, progress=gr.Progress()) -> tuple[str, str]:
"""Generate embeddings for documents in parallel with progress tracking"""
try:
db = db_utils.client[db_name]
collection = db[collection_name]
# Count documents that need embeddings
total_docs = collection.count_documents({field_name: {"$exists": True}})
if total_docs == 0:
return f"No documents found with field '{field_name}'", ""
# Get total count of documents that need processing
query = {
field_name: {"$exists": True},
embedding_field: {"$exists": False} # Only get docs without embeddings
}
total_to_process = collection.count_documents(query)
if total_to_process == 0:
return "No documents found that need embeddings", ""
# Apply limit if specified
if limit > 0:
total_to_process = min(total_to_process, limit)
print(f"\nFound {total_to_process} documents that need embeddings...")
# Progress tracking
progress_text = ""
def update_progress(prog: float, processed: int, total: int):
nonlocal progress_text
progress_text = f"Progress: {prog:.1f}% ({processed}/{total} documents)\n"
print(progress_text) # Terminal logging
progress(prog/100, f"Processed {processed}/{total} documents")
# Show initial progress
update_progress(0, 0, total_to_process)
# Create cursor for batch processing
cursor = collection.find(query)
if limit > 0:
cursor = cursor.limit(limit)
# Generate embeddings in parallel with cursor-based batching
processed = parallel_generate_embeddings(
collection=collection,
cursor=cursor,
field_name=field_name,
embedding_field=embedding_field,
openai_client=openai_client,
total_docs=total_to_process,
callback=update_progress
)
# Return completion message and final progress
instructions = f"""
Successfully generated embeddings for {processed} documents using parallel processing!
To create the vector search index in MongoDB Atlas:
1. Go to your Atlas cluster
2. Click on 'Search' tab
3. Create an index named 'vector_index' with this configuration:
{{
"fields": [
{{
"type": "vector",
"path": "{embedding_field}",
"numDimensions": 1536,
"similarity": "dotProduct"
}}
]
}}
You can now use the search tab with:
- Field to search: {field_name}
- Embedding field: {embedding_field}
"""
return instructions, progress_text
except Exception as e:
return f"Error: {str(e)}", ""
def vector_search(query_text: str, db_name: str, collection_name: str, embedding_field: str, index_name: str) -> str:
"""Perform vector search using embeddings"""
try:
print(f"\nProcessing query: {query_text}")
db = db_utils.client[db_name]
collection = db[collection_name]
# Get embeddings for query
embedding = get_embedding(query_text, openai_client)
print("Generated embeddings successfully")
results = collection.aggregate([
{
'$vectorSearch': {
"index": index_name,
"path": embedding_field,
"queryVector": embedding,
"numCandidates": 50,
"limit": 5
}
},
{
"$project": {
"search_score": { "$meta": "vectorSearchScore" },
"document": "$$ROOT"
}
}
])
# Format results
results_list = list(results)
formatted_results = []
for idx, result in enumerate(results_list, 1):
doc = result['document']
formatted_result = f"{idx}. Score: {result['search_score']:.4f}\n"
# Add all fields except _id and embeddings
for key, value in doc.items():
if key not in ['_id', embedding_field]:
formatted_result += f"{key}: {value}\n"
formatted_results.append(formatted_result)
return "\n".join(formatted_results) if formatted_results else "No results found"
except Exception as e:
return f"Error: {str(e)}"
# Create Gradio interface with tabs
with gr.Blocks(title="MongoDB Vector Search Tool") as iface:
gr.Markdown("# MongoDB Vector Search Tool")
# Get available databases
databases = db_utils.get_databases()
with gr.Tab("Generate Embeddings"):
with gr.Row():
db_input = gr.Dropdown(
choices=databases,
label="Select Database",
info="Available databases in Atlas cluster"
)
collection_input = gr.Dropdown(
choices=[],
label="Select Collection",
info="Collections in selected database"
)
with gr.Row():
field_input = gr.Dropdown(
choices=[],
label="Select Field for Embeddings",
info="Fields available in collection"
)
embedding_field_input = gr.Textbox(
label="Embedding Field Name",
value="embedding",
info="Field name where embeddings will be stored"
)
limit_input = gr.Number(
label="Document Limit",
value=10,
minimum=0,
info="Number of documents to process (0 for all documents)"
)
def update_collections(db_name):
collections = db_utils.get_collections(db_name)
# If there's only one collection, select it by default
value = collections[0] if len(collections) == 1 else None
return gr.Dropdown(choices=collections, value=value)
def update_fields(db_name, collection_name):
if db_name and collection_name:
fields = get_field_names(db_name, collection_name)
return gr.Dropdown(choices=fields)
return gr.Dropdown(choices=[])
# Update collections when database changes
db_input.change(
fn=update_collections,
inputs=[db_input],
outputs=[collection_input]
)
# Update fields when collection changes
collection_input.change(
fn=update_fields,
inputs=[db_input, collection_input],
outputs=[field_input]
)
generate_btn = gr.Button("Generate Embeddings")
generate_output = gr.Textbox(label="Results", lines=10)
progress_output = gr.Textbox(label="Progress", lines=3)
generate_btn.click(
generate_embeddings_for_field,
inputs=[db_input, collection_input, field_input, embedding_field_input, limit_input],
outputs=[generate_output, progress_output]
)
with gr.Tab("Search"):
with gr.Row():
search_db_input = gr.Dropdown(
choices=databases,
label="Select Database",
info="Database containing the vectors"
)
search_collection_input = gr.Dropdown(
choices=[],
label="Select Collection",
info="Collection containing the vectors"
)
with gr.Row():
search_embedding_field_input = gr.Textbox(
label="Embedding Field Name",
value="embedding",
info="Field containing the vectors"
)
search_index_input = gr.Textbox(
label="Vector Search Index Name",
value="vector_index",
info="Index created in Atlas UI"
)
# Update collections when database changes
search_db_input.change(
fn=update_collections,
inputs=[search_db_input],
outputs=[search_collection_input]
)
query_input = gr.Textbox(
label="Search Query",
lines=2,
placeholder="What would you like to search for?"
)
search_btn = gr.Button("Search")
search_output = gr.Textbox(label="Results", lines=10)
search_btn.click(
vector_search,
inputs=[
query_input,
search_db_input,
search_collection_input,
search_embedding_field_input,
search_index_input
],
outputs=search_output
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)
|