thankfulcarp's picture
app split
1efcbea
raw
history blame
18.2 kB
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler, WanTransformer3DModel, AutoModel, DiffusionPipeline
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel, UMT5EncoderModel, CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import tempfile
import re
import os
import traceback
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import gradio as gr
import random
# --- I2V (Image-to-Video) Configuration ---
I2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" # Used for VAE/encoder components
I2V_FUSIONX_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
I2V_FUSIONX_FILENAME = "Wan14Bi2vFusioniX.safetensors"
# --- T2V (Text-to-Video) Configuration ---
T2V_BASE_MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
T2V_LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
T2V_LORA_FILENAME = "FusionX_LoRa/Wan2.1_T2V_14B_FusionX_LoRA.safetensors"
# --- Load Pipelines ---
print("πŸš€ Loading I2V pipeline from single file...")
i2v_pipe = None
try:
# Load ALL components needed for the pipeline from the base model repo
i2v_image_encoder = CLIPVisionModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
i2v_vae = AutoencoderKLWan.from_pretrained(I2V_BASE_MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
i2v_text_encoder = CLIPTextModel.from_pretrained(I2V_BASE_MODEL_ID, subfolder="text_encoder", torch_dtype=torch.bfloat16)
i2v_tokenizer = CLIPTokenizer.from_pretrained(I2V_BASE_MODEL_ID, subfolder="tokenizer")
i2v_image_processor = CLIPImageProcessor.from_pretrained(I2V_BASE_MODEL_ID, subfolder="image_processor")
# Create scheduler with custom flow_shift
scheduler_config = UniPCMultistepScheduler.load_config(I2V_BASE_MODEL_ID, subfolder="scheduler")
scheduler_config['flow_shift'] = 8.0
i2v_scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
# Load the main transformer from the repo and filename
i2v_transformer = WanTransformer3DModel.from_single_file(
"https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/Wan14Bi2vFusioniX.safetensors",
torch_dtype=torch.bfloat16
)
# Manually assemble the pipeline with the custom transformer
i2v_pipe = WanImageToVideoPipeline(
vae=i2v_vae,
text_encoder=i2v_text_encoder,
tokenizer=i2v_tokenizer,
image_encoder=i2v_image_encoder,
image_processor=i2v_image_processor,
scheduler=i2v_scheduler,
transformer=i2v_transformer
)
i2v_pipe.to("cuda")
print("βœ… I2V pipeline loaded successfully from single file.")
except Exception as e:
print(f"❌ Critical Error: Failed to load I2V pipeline from single file.")
traceback.print_exc()
# --- Constants and Configuration ---
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 640
DEFAULT_W_SLIDER_VALUE = 1024
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
T2V_FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
# --- Default Prompts ---
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_prompt_t2v = "A breathtaking landscape with a flowing river, cinematic, 8k, photorealistic"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"
# --- Enhanced CSS for FusionX theme ---
custom_css = """
/* Enhanced FusionX theme with cinematic styling */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #1a1a2e 0%, #16213e 25%, #0f3460 50%, #533a7d 75%, #6a4c93 100%) !important;
background-size: 400% 400% !important;
animation: cinematicShift 20s ease infinite !important;
}
@keyframes cinematicShift {
0% { background-position: 0% 50%; }
25% { background-position: 100% 50%; }
50% { background-position: 100% 100%; }
75% { background-position: 0% 100%; }
100% { background-position: 0% 50%; }
}
/* Main container with cinematic glass effect */
.main-container {
backdrop-filter: blur(15px);
background: rgba(255, 255, 255, 0.08) !important;
border-radius: 25px !important;
padding: 35px !important;
box-shadow: 0 12px 40px 0 rgba(31, 38, 135, 0.4) !important;
border: 1px solid rgba(255, 255, 255, 0.15) !important;
position: relative;
overflow: hidden;
}
.main-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(255,255,255,0.1) 0%, transparent 50%, rgba(255,255,255,0.05) 100%);
pointer-events: none;
}
/* Enhanced header with FusionX branding */
h1 {
background: linear-gradient(45deg, #ffffff, #f0f8ff, #e6e6fa) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
font-weight: 900 !important;
font-size: 2.8rem !important;
text-align: center !important;
margin-bottom: 2.5rem !important;
text-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important;
position: relative;
}
h1::after {
content: '🎬 FusionX Enhanced';
display: block;
font-size: 1rem;
color: #6a4c93;
margin-top: 0.5rem;
font-weight: 500;
}
/* Enhanced component containers */
.input-container, .output-container {
background: rgba(255, 255, 255, 0.06) !important;
border-radius: 20px !important;
padding: 25px !important;
margin: 15px 0 !important;
backdrop-filter: blur(10px) !important;
border: 1px solid rgba(255, 255, 255, 0.12) !important;
box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
}
/* Cinematic input styling */
input, textarea, .gr-box {
background: rgba(255, 255, 255, 0.95) !important;
border: 1px solid rgba(106, 76, 147, 0.3) !important;
border-radius: 12px !important;
color: #1a1a2e !important;
transition: all 0.4s ease !important;
box-shadow: 0 2px 8px rgba(106, 76, 147, 0.1) !important;
}
input:focus, textarea:focus {
background: rgba(255, 255, 255, 1) !important;
border-color: #6a4c93 !important;
box-shadow: 0 0 0 3px rgba(106, 76, 147, 0.15) !important;
transform: translateY(-1px) !important;
}
/* Enhanced FusionX button */
.generate-btn {
background: linear-gradient(135deg, #6a4c93 0%, #533a7d 50%, #0f3460 100%) !important;
color: white !important;
font-weight: 700 !important;
font-size: 1.2rem !important;
padding: 15px 40px !important;
border-radius: 60px !important;
border: none !important;
cursor: pointer !important;
transition: all 0.4s ease !important;
box-shadow: 0 6px 20px rgba(106, 76, 147, 0.4) !important;
position: relative;
overflow: hidden;
}
.generate-btn::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.3), transparent);
transition: left 0.5s ease;
}
.generate-btn:hover::before {
left: 100%;
}
.generate-btn:hover {
transform: translateY(-3px) scale(1.02) !important;
box-shadow: 0 8px 25px rgba(106, 76, 147, 0.6) !important;
}
/* Enhanced slider styling */
input[type="range"] {
background: transparent !important;
}
input[type="range"]::-webkit-slider-track {
background: linear-gradient(90deg, rgba(106, 76, 147, 0.3), rgba(83, 58, 125, 0.5)) !important;
border-radius: 8px !important;
height: 8px !important;
}
input[type="range"]::-webkit-slider-thumb {
background: linear-gradient(135deg, #6a4c93, #533a7d) !important;
border: 3px solid white !important;
border-radius: 50% !important;
cursor: pointer !important;
width: 22px !important;
height: 22px !important;
-webkit-appearance: none !important;
box-shadow: 0 2px 8px rgba(106, 76, 147, 0.3) !important;
}
/* Enhanced accordion */
.gr-accordion {
background: rgba(255, 255, 255, 0.04) !important;
border-radius: 15px !important;
border: 1px solid rgba(255, 255, 255, 0.08) !important;
margin: 20px 0 !important;
backdrop-filter: blur(5px) !important;
}
/* Enhanced labels */
label {
color: #ffffff !important;
font-weight: 600 !important;
font-size: 1rem !important;
margin-bottom: 8px !important;
text-shadow: 1px 1px 2px rgba(0,0,0,0.5) !important;
}
/* Enhanced image upload */
.image-upload {
border: 3px dashed rgba(106, 76, 147, 0.4) !important;
border-radius: 20px !important;
background: rgba(255, 255, 255, 0.03) !important;
transition: all 0.4s ease !important;
position: relative;
}
.image-upload:hover {
border-color: rgba(106, 76, 147, 0.7) !important;
background: rgba(255, 255, 255, 0.08) !important;
transform: scale(1.01) !important;
}
/* Enhanced video output */
video {
border-radius: 20px !important;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.4) !important;
border: 2px solid rgba(106, 76, 147, 0.3) !important;
}
/* Tab styling */
.gr-tabs {
border-radius: 15px !important;
overflow: hidden;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
.gr-tabs .tabs {
background-color: rgba(255, 255, 255, 0.05) !important;
border-bottom: 1px solid rgba(255, 255, 255, 0.1) !important;
}
.gr-tabs .tab-item {
background: transparent !important;
color: #a9a9d8 !important;
border-radius: 10px 10px 0 0 !important;
transition: all 0.3s ease !important;
padding: 12px 20px !important;
}
.gr-tabs .tab-item.selected {
background: rgba(255, 255, 255, 0.1) !important;
color: #ffffff !important;
border-bottom: 2px solid #6a4c93 !important;
}
"""
# --- Helper Functions ---
def sanitize_prompt_for_filename(prompt: str, max_len: int = 60) -> str:
"""Sanitizes a prompt string to be used as a valid filename."""
if not prompt:
prompt = "video"
sanitized = re.sub(r'[^\w\s_-]', '', prompt).strip()
sanitized = re.sub(r'[\s_-]+', '_', sanitized)
return sanitized[:max_len]
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error calculating new dimensions. Resetting to default.")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
# --- GPU Duration Estimators for @spaces.GPU ---
def get_i2v_duration(steps, duration_seconds):
"""Estimates GPU time for Image-to-Video generation."""
if steps > 8 and duration_seconds > 3: return 600
elif steps > 8 or duration_seconds > 3: return 300
else: return 150
def get_t2v_duration(steps, duration_seconds):
"""Estimates GPU time for Text-to-Video generation."""
if steps > 15 and duration_seconds > 4: return 700
elif steps > 15 or duration_seconds > 4: return 400
else: return 200
# --- Core Generation Functions ---
@spaces.GPU(duration_from_args=get_i2v_duration)
def generate_i2v_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)):
"""Generates a video from an initial image and a prompt."""
if input_image is None:
raise gr.Error("Please upload an input image for Image-to-Video generation.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"
with torch.inference_mode():
output_frames_list = i2v_pipe(
image=resized_image,
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
sanitized_prompt = sanitize_prompt_for_filename(prompt)
filename = f"i2v_{sanitized_prompt}_{current_seed}.mp4"
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, filename)
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed, gr.File(value=video_path, visible=True, label=f"πŸ“₯ Download: {filename}")
# --- Gradio UI Layout ---
with gr.Blocks(css=custom_css) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# ⚑ FusionX Enhanced Wan 2.1 Video Suite")
with gr.Tabs(elem_classes=["gr-tabs"]):
# --- Image-to-Video Tab ---
with gr.TabItem("πŸ–ΌοΈ Image-to-Video", id="i2v_tab"):
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
i2v_input_image = gr.Image(
type="pil",
label="πŸ–ΌοΈ Input Image (auto-resizes H/W sliders)",
elem_classes=["image-upload"]
)
i2v_prompt = gr.Textbox(
label="✏️ Prompt",
value=default_prompt_i2v, lines=3
)
i2v_duration = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1, value=2, label="⏱️ Duration (seconds)",
info=f"Generates {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
i2v_neg_prompt = gr.Textbox(label="❌ Negative Prompt", value=default_negative_prompt, lines=4)
i2v_seed = gr.Slider(label="🎲 Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
i2v_rand_seed = gr.Checkbox(label="πŸ”€ Randomize seed", value=True, interactive=True)
with gr.Row():
i2v_height = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"πŸ“ Height ({MOD_VALUE}px steps)")
i2v_width = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"πŸ“ Width ({MOD_VALUE}px steps)")
i2v_steps = gr.Slider(minimum=1, maximum=20, step=1, value=8, label="πŸš€ Inference Steps", info="8-10 recommended for great results.")
i2v_guidance = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="🎯 Guidance Scale", visible=False)
i2v_generate_btn = gr.Button("🎬 Generate I2V", variant="primary", elem_classes=["generate-btn"])
with gr.Column(elem_classes=["output-container"]):
i2v_output_video = gr.Video(label="πŸŽ₯ Generated Video", autoplay=True, interactive=False)
i2v_download = gr.File(label="πŸ“₯ Download Video", visible=False)
# --- Event Handlers ---
# I2V Handlers
i2v_input_image.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[i2v_input_image],
outputs=[i2v_height, i2v_width]
)
i2v_input_image.clear(
fn=lambda: (DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE),
inputs=[],
outputs=[i2v_height, i2v_width]
)
i2v_generate_btn.click(
fn=generate_i2v_video,
inputs=[i2v_input_image, i2v_prompt, i2v_height, i2v_width, i2v_neg_prompt, i2v_duration, i2v_guidance, i2v_steps, i2v_seed, i2v_rand_seed],
outputs=[i2v_output_video, i2v_seed, i2v_download]
)
if __name__ == "__main__":
demo.queue().launch()