Spaces:
Running
Running
Upload 38 files
Browse files
src/components/MultiSourceCaptioningView.tsx
CHANGED
|
@@ -62,6 +62,27 @@ function isVideoFile(file: File) {
|
|
| 62 |
return file.type.startsWith("video/");
|
| 63 |
}
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
export default function MultiSourceCaptioningView() {
|
| 66 |
const [mode, setMode] = useState<Mode>("File");
|
| 67 |
const [videoUrl, setVideoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
|
|
@@ -80,6 +101,8 @@ export default function MultiSourceCaptioningView() {
|
|
| 80 |
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
|
| 81 |
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
|
| 82 |
const [inferenceStatus, setInferenceStatus] = useState<string>("");
|
|
|
|
|
|
|
| 83 |
|
| 84 |
const videoRef = useRef<HTMLVideoElement | null>(null);
|
| 85 |
const canvasRef = useRef<HTMLCanvasElement | null>(null);
|
|
@@ -87,6 +110,31 @@ export default function MultiSourceCaptioningView() {
|
|
| 87 |
const webcamStreamRef = useRef<MediaStream | null>(null);
|
| 88 |
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
const processVideoFrame = async () => {
|
| 91 |
if (!videoRef.current || !canvasRef.current) return;
|
| 92 |
const video = videoRef.current;
|
|
@@ -97,28 +145,46 @@ export default function MultiSourceCaptioningView() {
|
|
| 97 |
const ctx = canvas.getContext("2d");
|
| 98 |
if (!ctx) return;
|
| 99 |
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
boxes =
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
}
|
| 121 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
};
|
| 123 |
|
| 124 |
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
|
|
@@ -228,30 +294,55 @@ export default function MultiSourceCaptioningView() {
|
|
| 228 |
setProcessing(true);
|
| 229 |
setError(null);
|
| 230 |
setInferenceStatus("Running inference...");
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
boxes =
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
}
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
}
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
setProcessing(false);
|
| 256 |
};
|
| 257 |
|
|
|
|
| 62 |
return file.type.startsWith("video/");
|
| 63 |
}
|
| 64 |
|
| 65 |
+
// Utility to get ImageData from a video or image element
|
| 66 |
+
function getImageDataFromElement(media: HTMLVideoElement | HTMLImageElement): ImageData | null {
|
| 67 |
+
const canvas = document.createElement("canvas");
|
| 68 |
+
let width = 0, height = 0;
|
| 69 |
+
if (media instanceof HTMLVideoElement) {
|
| 70 |
+
width = media.videoWidth;
|
| 71 |
+
height = media.videoHeight;
|
| 72 |
+
} else if (media instanceof HTMLImageElement) {
|
| 73 |
+
width = media.naturalWidth;
|
| 74 |
+
height = media.naturalHeight;
|
| 75 |
+
} else {
|
| 76 |
+
return null;
|
| 77 |
+
}
|
| 78 |
+
canvas.width = width;
|
| 79 |
+
canvas.height = height;
|
| 80 |
+
const ctx = canvas.getContext("2d");
|
| 81 |
+
if (!ctx) return null;
|
| 82 |
+
ctx.drawImage(media, 0, 0, width, height);
|
| 83 |
+
return ctx.getImageData(0, 0, width, height);
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
export default function MultiSourceCaptioningView() {
|
| 87 |
const [mode, setMode] = useState<Mode>("File");
|
| 88 |
const [videoUrl, setVideoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
|
|
|
|
| 101 |
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
|
| 102 |
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
|
| 103 |
const [inferenceStatus, setInferenceStatus] = useState<string>("");
|
| 104 |
+
const inferenceWorkerRef = useRef<Worker | null>(null);
|
| 105 |
+
const [useWorker, setUseWorker] = useState(true); // Toggle for worker usage
|
| 106 |
|
| 107 |
const videoRef = useRef<HTMLVideoElement | null>(null);
|
| 108 |
const canvasRef = useRef<HTMLCanvasElement | null>(null);
|
|
|
|
| 110 |
const webcamStreamRef = useRef<MediaStream | null>(null);
|
| 111 |
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();
|
| 112 |
|
| 113 |
+
useEffect(() => {
|
| 114 |
+
if (useWorker) {
|
| 115 |
+
inferenceWorkerRef.current = new Worker(
|
| 116 |
+
new URL('../workers/inferenceWorker.ts', import.meta.url),
|
| 117 |
+
{ type: 'module' }
|
| 118 |
+
);
|
| 119 |
+
}
|
| 120 |
+
return () => {
|
| 121 |
+
inferenceWorkerRef.current?.terminate();
|
| 122 |
+
inferenceWorkerRef.current = null;
|
| 123 |
+
};
|
| 124 |
+
}, [useWorker]);
|
| 125 |
+
|
| 126 |
+
// Helper to run inference in worker
|
| 127 |
+
const runInferenceInWorker = (media: HTMLVideoElement | HTMLImageElement, prompt: string) => {
|
| 128 |
+
return new Promise((resolve, reject) => {
|
| 129 |
+
if (!inferenceWorkerRef.current) return reject('No worker');
|
| 130 |
+
const imageData = getImageDataFromElement(media);
|
| 131 |
+
if (!imageData) return reject('Could not get image data');
|
| 132 |
+
inferenceWorkerRef.current.onmessage = (event) => resolve(event.data);
|
| 133 |
+
inferenceWorkerRef.current.onerror = (err) => reject(err);
|
| 134 |
+
inferenceWorkerRef.current.postMessage({ imageData, prompt });
|
| 135 |
+
});
|
| 136 |
+
};
|
| 137 |
+
|
| 138 |
const processVideoFrame = async () => {
|
| 139 |
if (!videoRef.current || !canvasRef.current) return;
|
| 140 |
const video = videoRef.current;
|
|
|
|
| 145 |
const ctx = canvas.getContext("2d");
|
| 146 |
if (!ctx) return;
|
| 147 |
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
| 148 |
+
if (useWorker && inferenceWorkerRef.current) {
|
| 149 |
+
try {
|
| 150 |
+
const output = await runInferenceInWorker(video, prompt);
|
| 151 |
+
setDebugOutput(JSON.stringify(output, null, 2));
|
| 152 |
+
let boxes = normalizeBoxes(output);
|
| 153 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
| 154 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
| 155 |
+
const scaleX = canvas.width / video.videoWidth;
|
| 156 |
+
const scaleY = canvas.height / video.videoHeight;
|
| 157 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 158 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
| 159 |
+
}
|
| 160 |
+
} catch (err) {
|
| 161 |
+
setInferenceStatus("Worker inference failed, falling back to main thread.");
|
| 162 |
+
// fallback to main-thread inference
|
| 163 |
+
await runInference(video, prompt, (output: string) => {
|
| 164 |
+
setDebugOutput(output);
|
| 165 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
| 166 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
| 167 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
| 168 |
+
const scaleX = canvas.width / video.videoWidth;
|
| 169 |
+
const scaleY = canvas.height / video.videoHeight;
|
| 170 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 171 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
| 172 |
+
}
|
| 173 |
+
});
|
| 174 |
}
|
| 175 |
+
} else {
|
| 176 |
+
await runInference(video, prompt, (output: string) => {
|
| 177 |
+
setDebugOutput(output);
|
| 178 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
| 179 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
| 180 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
| 181 |
+
const scaleX = canvas.width / video.videoWidth;
|
| 182 |
+
const scaleY = canvas.height / video.videoHeight;
|
| 183 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 184 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
| 185 |
+
}
|
| 186 |
+
});
|
| 187 |
+
}
|
| 188 |
};
|
| 189 |
|
| 190 |
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
|
|
|
|
| 294 |
setProcessing(true);
|
| 295 |
setError(null);
|
| 296 |
setInferenceStatus("Running inference...");
|
| 297 |
+
if (useWorker && inferenceWorkerRef.current) {
|
| 298 |
+
try {
|
| 299 |
+
const output = await runInferenceInWorker(img, prompt);
|
| 300 |
+
setDebugOutput(JSON.stringify(output, null, 2));
|
| 301 |
+
setInferenceStatus("Inference complete.");
|
| 302 |
+
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
| 303 |
+
let boxes = normalizeBoxes(output);
|
| 304 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
| 305 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
| 306 |
+
const scaleX = canvas.width / img.naturalWidth;
|
| 307 |
+
const scaleY = canvas.height / img.naturalHeight;
|
| 308 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 309 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
| 310 |
+
}
|
| 311 |
+
setImageProcessed(true);
|
| 312 |
+
} catch (err) {
|
| 313 |
+
setInferenceStatus("Worker inference failed, falling back to main thread.");
|
| 314 |
+
// fallback to main-thread inference
|
| 315 |
+
await runInference(img, prompt, (output: string) => {
|
| 316 |
+
setDebugOutput(output);
|
| 317 |
+
setInferenceStatus("Inference complete.");
|
| 318 |
+
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
| 319 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
| 320 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
| 321 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
| 322 |
+
const scaleX = canvas.width / img.naturalWidth;
|
| 323 |
+
const scaleY = canvas.height / img.naturalHeight;
|
| 324 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 325 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
| 326 |
+
}
|
| 327 |
+
setImageProcessed(true);
|
| 328 |
+
});
|
| 329 |
}
|
| 330 |
+
} else {
|
| 331 |
+
await runInference(img, prompt, (output: string) => {
|
| 332 |
+
setDebugOutput(output);
|
| 333 |
+
setInferenceStatus("Inference complete.");
|
| 334 |
+
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
| 335 |
+
let boxes = normalizeBoxes(extractJsonFromMarkdown(output) || []);
|
| 336 |
+
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
|
| 337 |
+
if (Array.isArray(boxes) && boxes.length > 0) {
|
| 338 |
+
const scaleX = canvas.width / img.naturalWidth;
|
| 339 |
+
const scaleY = canvas.height / img.naturalHeight;
|
| 340 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 341 |
+
drawBoundingBoxesOnCanvas(ctx, boxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX, scaleY });
|
| 342 |
+
}
|
| 343 |
+
setImageProcessed(true);
|
| 344 |
+
});
|
| 345 |
+
}
|
| 346 |
setProcessing(false);
|
| 347 |
};
|
| 348 |
|
src/workers/inferenceWorker.ts
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// src/workers/inferenceWorker.ts
|
| 2 |
+
self.onmessage = async (event) => {
|
| 3 |
+
const { imageData, prompt } = event.data;
|
| 4 |
+
// TODO: Import and run your real model inference here
|
| 5 |
+
// For now, just echo a fake result for testing
|
| 6 |
+
const result = [{ label: "person", bbox_2d: [[100, 50], [200, 300]] }];
|
| 7 |
+
self.postMessage(result);
|
| 8 |
+
};
|
| 9 |
+
export {};
|