Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -43,31 +43,8 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
|
43 |
|
44 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
pipe.text_encoder_2 = pipe.text_encoder_2.to(dtype=torch.float16)
|
49 |
-
|
50 |
-
# Patch the text encoder forward methods to ensure consistent dtype
|
51 |
-
def patch_text_encoder_forward(encoder):
|
52 |
-
original_forward = encoder.forward
|
53 |
-
|
54 |
-
def patched_forward(*args, **kwargs):
|
55 |
-
# Convert input tensors to float16
|
56 |
-
if len(args) > 0 and isinstance(args[0], torch.Tensor):
|
57 |
-
args = list(args)
|
58 |
-
args[0] = args[0].to(dtype=torch.float16)
|
59 |
-
|
60 |
-
for key in kwargs:
|
61 |
-
if isinstance(kwargs[key], torch.Tensor):
|
62 |
-
kwargs[key] = kwargs[key].to(dtype=torch.float16)
|
63 |
-
|
64 |
-
return original_forward(*args, **kwargs)
|
65 |
-
|
66 |
-
encoder.forward = patched_forward
|
67 |
-
|
68 |
-
# Apply the patch to both encoders
|
69 |
-
patch_text_encoder_forward(pipe.text_encoder)
|
70 |
-
patch_text_encoder_forward(pipe.text_encoder_2)
|
71 |
|
72 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
73 |
"""Checks if the image can be expanded based on the alignment."""
|
@@ -170,23 +147,19 @@ def infer(image, width, height, overlap_width, num_inference_steps, resize_optio
|
|
170 |
|
171 |
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
image=cnet_image,
|
187 |
-
num_inference_steps=num_inference_steps
|
188 |
-
):
|
189 |
-
yield cnet_image, image
|
190 |
|
191 |
image = image.convert("RGBA")
|
192 |
cnet_image.paste(image, (0, 0), mask)
|
|
|
43 |
|
44 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
45 |
|
46 |
+
# The key differences are below - don't modify the text encoder directly
|
47 |
+
# We'll fix it in the pipeline code instead
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
50 |
"""Checks if the image can be expanded based on the alignment."""
|
|
|
147 |
|
148 |
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"
|
149 |
|
150 |
+
# Important fix: Use the original pipeline's method without modifications
|
151 |
+
# Let it handle the dtype conversions internally
|
152 |
+
encoded_prompts = pipe.encode_prompt(final_prompt, "cuda", True)
|
153 |
+
|
154 |
+
for image in pipe(
|
155 |
+
prompt_embeds=encoded_prompts[0],
|
156 |
+
negative_prompt_embeds=encoded_prompts[1],
|
157 |
+
pooled_prompt_embeds=encoded_prompts[2],
|
158 |
+
negative_pooled_prompt_embeds=encoded_prompts[3],
|
159 |
+
image=cnet_image,
|
160 |
+
num_inference_steps=num_inference_steps
|
161 |
+
):
|
162 |
+
yield cnet_image, image
|
|
|
|
|
|
|
|
|
163 |
|
164 |
image = image.convert("RGBA")
|
165 |
cnet_image.paste(image, (0, 0), mask)
|