File size: 9,695 Bytes
bce439c
7f98410
 
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
9dace64
 
7f98410
f3cae17
7f98410
0e14842
bce439c
9153c3d
0e14842
bce439c
 
 
0e14842
 
 
 
f3cae17
7f98410
 
 
 
 
 
 
 
f3cae17
 
 
 
 
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
0e14842
f3cae17
 
 
 
 
 
 
 
 
 
 
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
bce439c
 
 
 
 
 
 
fda85af
bce439c
7f98410
9dace64
 
7f98410
 
 
0e14842
 
3bc3bbd
 
 
 
 
0e14842
3bc3bbd
 
 
 
 
 
bce439c
bf65a8f
 
0e14842
 
 
9dace64
66d5f35
9d997d8
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e14842
bce439c
7f98410
9dace64
7f98410
 
 
 
 
9dace64
 
a2bd23b
9dace64
fda85af
7f98410
 
 
 
9dace64
7f98410
 
 
 
bce439c
9dace64
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
7f98410
ba0cd8f
0e14842
fda85af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "ginipick/flux-lora-eric-cat"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    predefined_images = [
        "assets/cm1.webp",
        "assets/cm2.webp",
        "assets/cm3.webp",
        "assets/cm4.webp",
        "assets/cm5.webp",
        "assets/cm6.webp",
    ]
    return predefined_images

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return the image, seed, and updated gallery
    return image, seed, load_generated_images()

examples = [
    "A plump orange tabby cat wearing a tiny chef's hat in a sunny kitchen, flour dusted across its pink nose as it playfully bats at falling cookie dough. Its round amber eyes follow each movement with intense concentration, while its fluffy tail swishes back and forth in excitement. A small white apron tied around its rotund belly adds to the adorable scene as morning sunlight streams through lace curtains, highlighting whiskers covered in cookie crumbs. [trigger]",

    "A sleek black kitten wrapped in a miniature superhero cape, perched dramatically on top of a bookshelf. Its tiny purple cape flutters in the breeze from an open window while its bright green eyes scan the room for imaginary villains. One paw is raised heroically in the air, ready for action, while its little pink toe beans peek out beneath the flowing cape fabric. A sparkly silver mask sits slightly askew across its curious face. [trigger]",

    "A fluffy white Persian cat snuggled in a patch of garden flowers, wearing delicate fairy wings made of gossamer and glitter. Surrounded by blooming daisies and butterflies, it lazily bats at a dandelion puff floating by, while its long fur ripples like silk in the gentle spring breeze. A tiny flower crown rests between its ears, slightly crooked from its playful rolling in the grass. [trigger]",

    "A mischievous Siamese kitten in the middle of a yarn shop disaster, tangled in strings of rainbow-colored wool. Its blue eyes gleam with satisfaction as it sits in the center of its chaotic masterpiece, one paw still batting at a dangling thread. A single strand of pink yarn is draped across its ears like a festive headband, while bits of purple and blue wool decorate its whiskers. [trigger]",

    "A sleepy Scottish Fold cat in cozy pajamas, curled up in a miniature human-style bed complete with tiny pillows and a patchwork quilt. Its folded ears twitch occasionally as it dreams, while its round face wears an expression of pure contentment. The striped pajamas have little fish patterns, and one fuzzy paw clutches a diminutive teddy bear as it snoozes peacefully. [trigger]",

    "A curious tuxedo kitten exploring a magical cardboard castle, wearing a tiny paper crown and royal cape. Its black and white face peeks out from various windows and doorways it has created, whiskers twitching with excitement at each new discovery. Colorful drawings decorate the castle walls, while small paw prints in paint trail behind this creative architect as it plans its next renovation. [trigger]"
]
css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
    gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')

    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column(elem_id="col-container"):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gallery_header = gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("🔄 Refresh Gallery")

    # Add sample gallery section at the bottom
    gr.Markdown("### Claude Monet Style Examples")
    predefined_gallery = gr.Gallery(
        label="Sample Images", 
        columns=3,
        rows=2,
        show_label=False, 
        value=load_predefined_images()
    )

    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()