Spaces:
Running
Running
File size: 6,675 Bytes
69620c8 6960db5 54d0511 31c0b50 6960db5 8c89a89 69620c8 8c89a89 69620c8 8c89a89 c1bd24e 69620c8 c401dbb 8c89a89 6960db5 8c89a89 69620c8 8c89a89 69620c8 4f076f3 69620c8 6960db5 69620c8 4f076f3 69620c8 43af73f 4b8e8f5 2cb92de 4b8e8f5 43af73f 4b8e8f5 2cb92de 4b8e8f5 c0fd987 4b8e8f5 69620c8 8c89a89 69620c8 4b8e8f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# ๊ธฐ๋ณธ ๋ชจ๋ธ ๋ฐ LoRA ์ค์
base_model = "black-forest-labs/FLUX.1-dev"
model_lora_repo = "Motas/Flux_Fashion_Photography_Style" # ํจ์
๋ชจ๋ธ LoRA
clothes_lora_repo = "prithivMLmods/Canopus-Clothing-Flux-LoRA" # ์๋ฅ LoRA
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
pipe.to("cuda")
MAX_SEED = 2**32-1
@spaces.GPU()
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
def contains_korean(text):
return any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text)
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
# ๋ชจ๋์ ๋ฐ๋ฅธ LoRA ๋ฐ ํธ๋ฆฌ๊ฑฐ์๋ ์ค์
if mode == "Generate Model":
pipe.load_lora_weights(model_lora_repo)
trigger_word = "fashion photography, professional model"
else:
pipe.load_lora_weights(clothes_lora_repo)
trigger_word = "upper clothing, fashion item"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting fashion generation...")
for i in range(1, steps + 1):
if i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
progress(100, "Completed!")
return image, seed
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
# ์ค์ ์ด๋ฏธ์ง ์์ฑ ๋ก์ง์ ์ฌ๊ธฐ์ ๊ตฌํ
return Image.new('RGB', (512, 512), 'white')
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as app:
gr.Markdown("# ๐ญ Fashion AI Studio")
gr.Markdown("Generate fashion images and try on virtual clothing using AI")
with gr.Tabs():
# Virtual Try-On ํญ
with gr.TabItem("๐ Virtual Try-On"):
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Style Description",
placeholder="Describe the desired style (e.g., 'person wearing elegant dress')"
)
with gr.Row():
with gr.Group():
structure_image = gr.Image(
label="Your Photo (Full-body)",
type="filepath"
)
gr.Markdown("*Upload a clear, well-lit full-body photo*")
depth_strength = gr.Slider(
minimum=0,
maximum=50,
value=15,
label="Fitting Strength"
)
with gr.Group():
style_image = gr.Image(
label="Clothing Item",
type="filepath"
)
gr.Markdown("*Upload the clothing item you want to try on*")
style_strength = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Style Transfer Strength"
)
tryon_btn = gr.Button("Generate Try-On")
with gr.Column():
output_image = gr.Image(label="Generated Result")
# Fashion Generation ํญ
with gr.TabItem("๐ Fashion Generation"):
with gr.Column():
# ๋ชจ๋ ์ ํ
with gr.Group():
mode = gr.Radio(
choices=["Generate Model", "Generate Clothes"],
label="Generation Mode",
value="Generate Model"
)
# ํ๋กฌํํธ ์
๋ ฅ
prompt = gr.TextArea(
label="โ๏ธ Fashion Description (ํ๊ธ ๋๋ ์์ด)",
placeholder="ํจ์
๋ชจ๋ธ์ด๋ ์๋ฅ๋ฅผ ์ค๋ช
ํ์ธ์...",
lines=5
)
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง
result = gr.Image(label="Generated Fashion")
generate_button = gr.Button("๐ Generate Fashion")
# ๊ณ ๊ธ ์ค์ ์์ฝ๋์ธ
with gr.Accordion("๐จ Advanced Options", open=False):
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7.0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, value=0.85)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=1536, value=768)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, value=42)
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
tryon_btn.click(
fn=generate_image,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=[output_image]
)
generate_button.click(
generate_fashion,
inputs=[prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
if __name__ == "__main__":
app.launch(share=True) |