Delete inference_webui.py
Browse files- inference_webui.py +0 -225
inference_webui.py
DELETED
@@ -1,225 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import os
|
3 |
-
import uuid
|
4 |
-
from datetime import datetime
|
5 |
-
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
-
import spaces
|
8 |
-
import torch
|
9 |
-
from diffusers import DiffusionPipeline
|
10 |
-
from PIL import Image
|
11 |
-
|
12 |
-
# Create permanent storage directory
|
13 |
-
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
14 |
-
if not os.path.exists(SAVE_DIR):
|
15 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
16 |
-
|
17 |
-
# Load the default image
|
18 |
-
DEFAULT_IMAGE_PATH = "cover1.webp"
|
19 |
-
|
20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
-
repo_id = "black-forest-labs/FLUX.1-dev"
|
22 |
-
adapter_id = "alvdansen/pola-photo-flux"
|
23 |
-
|
24 |
-
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
25 |
-
pipeline.load_lora_weights(adapter_id)
|
26 |
-
pipeline = pipeline.to(device)
|
27 |
-
|
28 |
-
MAX_SEED = np.iinfo(np.int32).max
|
29 |
-
MAX_IMAGE_SIZE = 1024
|
30 |
-
|
31 |
-
def save_generated_image(image, prompt):
|
32 |
-
# Generate unique filename with timestamp
|
33 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
34 |
-
unique_id = str(uuid.uuid4())[:8]
|
35 |
-
filename = f"{timestamp}_{unique_id}.png"
|
36 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
37 |
-
|
38 |
-
# Save the image
|
39 |
-
image.save(filepath)
|
40 |
-
|
41 |
-
# Save metadata
|
42 |
-
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
43 |
-
with open(metadata_file, "a", encoding="utf-8") as f:
|
44 |
-
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
45 |
-
|
46 |
-
return filepath
|
47 |
-
|
48 |
-
def load_generated_images():
|
49 |
-
if not os.path.exists(SAVE_DIR):
|
50 |
-
return []
|
51 |
-
|
52 |
-
# Load all images from the directory
|
53 |
-
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
|
54 |
-
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
|
55 |
-
# Sort by creation time (newest first)
|
56 |
-
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
57 |
-
return image_files
|
58 |
-
|
59 |
-
def load_predefined_images():
|
60 |
-
# Return empty list since we're not using predefined images
|
61 |
-
return []
|
62 |
-
|
63 |
-
@spaces.GPU(duration=120)
|
64 |
-
def inference(
|
65 |
-
prompt: str,
|
66 |
-
seed: int,
|
67 |
-
randomize_seed: bool,
|
68 |
-
width: int,
|
69 |
-
height: int,
|
70 |
-
guidance_scale: float,
|
71 |
-
num_inference_steps: int,
|
72 |
-
lora_scale: float,
|
73 |
-
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
74 |
-
):
|
75 |
-
if randomize_seed:
|
76 |
-
seed = random.randint(0, MAX_SEED)
|
77 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
78 |
-
|
79 |
-
image = pipeline(
|
80 |
-
prompt=prompt,
|
81 |
-
guidance_scale=guidance_scale,
|
82 |
-
num_inference_steps=num_inference_steps,
|
83 |
-
width=width,
|
84 |
-
height=height,
|
85 |
-
generator=generator,
|
86 |
-
joint_attention_kwargs={"scale": lora_scale},
|
87 |
-
).images[0]
|
88 |
-
|
89 |
-
# Save the generated image
|
90 |
-
filepath = save_generated_image(image, prompt)
|
91 |
-
|
92 |
-
# Return the image, seed, and updated gallery
|
93 |
-
return image, seed, load_generated_images()
|
94 |
-
|
95 |
-
|
96 |
-
examples = [
|
97 |
-
"polaroid style, a woman with long blonde hair wearing big round hippie sunglasses with a slight smile, white oversized fur coat, black dress, early evening in the city, polaroid style [trigger]"
|
98 |
-
]
|
99 |
-
|
100 |
-
css = """
|
101 |
-
footer {
|
102 |
-
visibility: hidden;
|
103 |
-
}
|
104 |
-
"""
|
105 |
-
|
106 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css, analytics_enabled=False) as demo:
|
107 |
-
gr.HTML('<div class="title"> Polaroid style Image Generation </div>')
|
108 |
-
|
109 |
-
|
110 |
-
with gr.Tabs() as tabs:
|
111 |
-
with gr.Tab("Generation"):
|
112 |
-
with gr.Column(elem_id="col-container"):
|
113 |
-
with gr.Row():
|
114 |
-
prompt = gr.Text(
|
115 |
-
label="Prompt",
|
116 |
-
show_label=False,
|
117 |
-
max_lines=1,
|
118 |
-
placeholder="Enter your prompt",
|
119 |
-
container=False,
|
120 |
-
)
|
121 |
-
run_button = gr.Button("Run", scale=0)
|
122 |
-
|
123 |
-
# Modified to include the default image
|
124 |
-
result = gr.Image(
|
125 |
-
label="Result",
|
126 |
-
show_label=False,
|
127 |
-
value=DEFAULT_IMAGE_PATH # Set the default image
|
128 |
-
)
|
129 |
-
|
130 |
-
with gr.Accordion("Advanced Settings", open=False):
|
131 |
-
seed = gr.Slider(
|
132 |
-
label="Seed",
|
133 |
-
minimum=0,
|
134 |
-
maximum=MAX_SEED,
|
135 |
-
step=1,
|
136 |
-
value=42,
|
137 |
-
)
|
138 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
139 |
-
|
140 |
-
with gr.Row():
|
141 |
-
width = gr.Slider(
|
142 |
-
label="Width",
|
143 |
-
minimum=256,
|
144 |
-
maximum=MAX_IMAGE_SIZE,
|
145 |
-
step=32,
|
146 |
-
value=1024,
|
147 |
-
)
|
148 |
-
height = gr.Slider(
|
149 |
-
label="Height",
|
150 |
-
minimum=256,
|
151 |
-
maximum=MAX_IMAGE_SIZE,
|
152 |
-
step=32,
|
153 |
-
value=768,
|
154 |
-
)
|
155 |
-
|
156 |
-
with gr.Row():
|
157 |
-
guidance_scale = gr.Slider(
|
158 |
-
label="Guidance scale",
|
159 |
-
minimum=0.0,
|
160 |
-
maximum=10.0,
|
161 |
-
step=0.1,
|
162 |
-
value=3.5,
|
163 |
-
)
|
164 |
-
num_inference_steps = gr.Slider(
|
165 |
-
label="Number of inference steps",
|
166 |
-
minimum=1,
|
167 |
-
maximum=50,
|
168 |
-
step=1,
|
169 |
-
value=30,
|
170 |
-
)
|
171 |
-
lora_scale = gr.Slider(
|
172 |
-
label="LoRA scale",
|
173 |
-
minimum=0.0,
|
174 |
-
maximum=1.0,
|
175 |
-
step=0.1,
|
176 |
-
value=1.0,
|
177 |
-
)
|
178 |
-
|
179 |
-
gr.Examples(
|
180 |
-
examples=examples,
|
181 |
-
inputs=[prompt],
|
182 |
-
outputs=[result, seed],
|
183 |
-
)
|
184 |
-
|
185 |
-
with gr.Tab("Gallery"):
|
186 |
-
gallery_header = gr.Markdown("### Generated Images Gallery")
|
187 |
-
generated_gallery = gr.Gallery(
|
188 |
-
label="Generated Images",
|
189 |
-
columns=6,
|
190 |
-
show_label=False,
|
191 |
-
value=load_generated_images(),
|
192 |
-
elem_id="generated_gallery",
|
193 |
-
height="auto"
|
194 |
-
)
|
195 |
-
refresh_btn = gr.Button("🔄 Refresh Gallery")
|
196 |
-
|
197 |
-
|
198 |
-
# Event handlers
|
199 |
-
def refresh_gallery():
|
200 |
-
return load_generated_images()
|
201 |
-
|
202 |
-
refresh_btn.click(
|
203 |
-
fn=refresh_gallery,
|
204 |
-
inputs=None,
|
205 |
-
outputs=generated_gallery,
|
206 |
-
)
|
207 |
-
|
208 |
-
gr.on(
|
209 |
-
triggers=[run_button.click, prompt.submit],
|
210 |
-
fn=inference,
|
211 |
-
inputs=[
|
212 |
-
prompt,
|
213 |
-
seed,
|
214 |
-
randomize_seed,
|
215 |
-
width,
|
216 |
-
height,
|
217 |
-
guidance_scale,
|
218 |
-
num_inference_steps,
|
219 |
-
lora_scale,
|
220 |
-
],
|
221 |
-
outputs=[result, seed, generated_gallery],
|
222 |
-
)
|
223 |
-
|
224 |
-
demo.queue()
|
225 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|