Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import random
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import spaces
|
|
@@ -7,6 +9,11 @@ import torch
|
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
from PIL import Image
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 12 |
adapter_id = "openfree/claude-monet"
|
|
@@ -15,10 +22,30 @@ pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16
|
|
| 15 |
pipeline.load_lora_weights(adapter_id)
|
| 16 |
pipeline = pipeline.to(device)
|
| 17 |
|
| 18 |
-
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
MAX_IMAGE_SIZE = 1024
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
@spaces.GPU(duration=120)
|
| 24 |
def inference(
|
|
@@ -45,8 +72,12 @@ def inference(
|
|
| 45 |
generator=generator,
|
| 46 |
joint_attention_kwargs={"scale": lora_scale},
|
| 47 |
).images[0]
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def load_predefined_images():
|
| 52 |
predefined_images = [
|
|
@@ -74,84 +105,97 @@ footer {
|
|
| 74 |
}
|
| 75 |
"""
|
| 76 |
|
| 77 |
-
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css
|
| 78 |
-
) as demo:
|
| 79 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
| 80 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
)
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
lora_scale = gr.Slider(
|
| 143 |
-
label="LoRA scale",
|
| 144 |
-
minimum=0.0,
|
| 145 |
-
maximum=1.0,
|
| 146 |
-
step=0.1,
|
| 147 |
-
value=1.0,
|
| 148 |
-
)
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
gr.on(
|
| 157 |
triggers=[run_button.click, prompt.submit],
|
|
@@ -166,17 +210,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css
|
|
| 166 |
num_inference_steps,
|
| 167 |
lora_scale,
|
| 168 |
],
|
| 169 |
-
outputs=[result, seed],
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
# Add gallery section at the bottom
|
| 173 |
-
gr.Markdown("### Claude Monet Style Examples")
|
| 174 |
-
predefined_gallery = gr.Gallery(
|
| 175 |
-
label="Sample Images",
|
| 176 |
-
columns=3,
|
| 177 |
-
rows=2,
|
| 178 |
-
show_label=False,
|
| 179 |
-
value=load_predefined_images()
|
| 180 |
)
|
| 181 |
|
| 182 |
demo.queue()
|
|
|
|
| 1 |
import random
|
| 2 |
+
import os
|
| 3 |
+
import uuid
|
| 4 |
+
from datetime import datetime
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import spaces
|
|
|
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
+
# Create directories if they don't exist
|
| 13 |
+
SAVE_DIR = "generated_images"
|
| 14 |
+
if not os.path.exists(SAVE_DIR):
|
| 15 |
+
os.makedirs(SAVE_DIR)
|
| 16 |
+
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 19 |
adapter_id = "openfree/claude-monet"
|
|
|
|
| 22 |
pipeline.load_lora_weights(adapter_id)
|
| 23 |
pipeline = pipeline.to(device)
|
| 24 |
|
|
|
|
| 25 |
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
MAX_IMAGE_SIZE = 1024
|
| 27 |
|
| 28 |
+
def save_generated_image(image):
|
| 29 |
+
# Generate unique filename with timestamp
|
| 30 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 31 |
+
unique_id = str(uuid.uuid4())[:8]
|
| 32 |
+
filename = f"{timestamp}_{unique_id}.png"
|
| 33 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
| 34 |
+
|
| 35 |
+
# Save the image
|
| 36 |
+
image.save(filepath)
|
| 37 |
+
return filepath
|
| 38 |
+
|
| 39 |
+
def load_generated_images():
|
| 40 |
+
if not os.path.exists(SAVE_DIR):
|
| 41 |
+
return []
|
| 42 |
+
|
| 43 |
+
# Load all images from the directory
|
| 44 |
+
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
|
| 45 |
+
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
|
| 46 |
+
# Sort by creation time (newest first)
|
| 47 |
+
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
| 48 |
+
return image_files
|
| 49 |
|
| 50 |
@spaces.GPU(duration=120)
|
| 51 |
def inference(
|
|
|
|
| 72 |
generator=generator,
|
| 73 |
joint_attention_kwargs={"scale": lora_scale},
|
| 74 |
).images[0]
|
| 75 |
+
|
| 76 |
+
# Save the generated image
|
| 77 |
+
save_generated_image(image)
|
| 78 |
+
|
| 79 |
+
# Return the image, seed, and updated gallery
|
| 80 |
+
return image, seed, load_generated_images()
|
| 81 |
|
| 82 |
def load_predefined_images():
|
| 83 |
predefined_images = [
|
|
|
|
| 105 |
}
|
| 106 |
"""
|
| 107 |
|
| 108 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
|
|
| 109 |
gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
|
| 110 |
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
|
| 111 |
|
| 112 |
+
with gr.Tabs() as tabs:
|
| 113 |
+
with gr.Tab("Generation"):
|
| 114 |
+
with gr.Column(elem_id="col-container"):
|
| 115 |
+
with gr.Row():
|
| 116 |
+
prompt = gr.Text(
|
| 117 |
+
label="Prompt",
|
| 118 |
+
show_label=False,
|
| 119 |
+
max_lines=1,
|
| 120 |
+
placeholder="Enter your prompt",
|
| 121 |
+
container=False,
|
| 122 |
+
)
|
| 123 |
+
run_button = gr.Button("Run", scale=0)
|
| 124 |
+
|
| 125 |
+
result = gr.Image(label="Result", show_label=False)
|
| 126 |
+
|
| 127 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 128 |
+
seed = gr.Slider(
|
| 129 |
+
label="Seed",
|
| 130 |
+
minimum=0,
|
| 131 |
+
maximum=MAX_SEED,
|
| 132 |
+
step=1,
|
| 133 |
+
value=42,
|
| 134 |
+
)
|
| 135 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 136 |
+
|
| 137 |
+
with gr.Row():
|
| 138 |
+
width = gr.Slider(
|
| 139 |
+
label="Width",
|
| 140 |
+
minimum=256,
|
| 141 |
+
maximum=MAX_IMAGE_SIZE,
|
| 142 |
+
step=32,
|
| 143 |
+
value=1024,
|
| 144 |
+
)
|
| 145 |
+
height = gr.Slider(
|
| 146 |
+
label="Height",
|
| 147 |
+
minimum=256,
|
| 148 |
+
maximum=MAX_IMAGE_SIZE,
|
| 149 |
+
step=32,
|
| 150 |
+
value=768,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
guidance_scale = gr.Slider(
|
| 155 |
+
label="Guidance scale",
|
| 156 |
+
minimum=0.0,
|
| 157 |
+
maximum=10.0,
|
| 158 |
+
step=0.1,
|
| 159 |
+
value=3.5,
|
| 160 |
+
)
|
| 161 |
+
num_inference_steps = gr.Slider(
|
| 162 |
+
label="Number of inference steps",
|
| 163 |
+
minimum=1,
|
| 164 |
+
maximum=50,
|
| 165 |
+
step=1,
|
| 166 |
+
value=30,
|
| 167 |
+
)
|
| 168 |
+
lora_scale = gr.Slider(
|
| 169 |
+
label="LoRA scale",
|
| 170 |
+
minimum=0.0,
|
| 171 |
+
maximum=1.0,
|
| 172 |
+
step=0.1,
|
| 173 |
+
value=1.0,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
gr.Examples(
|
| 177 |
+
examples=examples,
|
| 178 |
+
inputs=[prompt],
|
| 179 |
+
outputs=[result, seed],
|
| 180 |
)
|
| 181 |
|
| 182 |
+
with gr.Tab("Gallery"):
|
| 183 |
+
generated_gallery = gr.Gallery(
|
| 184 |
+
label="Generated Images",
|
| 185 |
+
columns=6,
|
| 186 |
+
show_label=False,
|
| 187 |
+
value=load_generated_images(),
|
| 188 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
# Add sample gallery section at the bottom
|
| 191 |
+
gr.Markdown("### Claude Monet Style Examples")
|
| 192 |
+
predefined_gallery = gr.Gallery(
|
| 193 |
+
label="Sample Images",
|
| 194 |
+
columns=3,
|
| 195 |
+
rows=2,
|
| 196 |
+
show_label=False,
|
| 197 |
+
value=load_predefined_images()
|
| 198 |
+
)
|
| 199 |
|
| 200 |
gr.on(
|
| 201 |
triggers=[run_button.click, prompt.submit],
|
|
|
|
| 210 |
num_inference_steps,
|
| 211 |
lora_scale,
|
| 212 |
],
|
| 213 |
+
outputs=[result, seed, generated_gallery],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
)
|
| 215 |
|
| 216 |
demo.queue()
|