Spaces:
Runtime error
Runtime error
add trainer
Browse files
README.md
CHANGED
File without changes
|
source/services/predicting_effective_arguments/train/model.py
CHANGED
@@ -5,6 +5,7 @@ import torch
|
|
5 |
import numpy as np
|
6 |
import torch.nn.functional as F
|
7 |
import matplotlib.pyplot as plt
|
|
|
8 |
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -22,35 +23,37 @@ class TransformersSequenceClassifier:
|
|
22 |
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
23 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels).to(device)
|
24 |
|
25 |
-
def
|
26 |
return self.tokenizer(batch["inputs"], truncation=True) #, max_len=386
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
val_tok_dataset = eval_dataset.map(self.tokenizer_func, batched=True, remove_columns=('inputs', '__index_level_0__'))
|
32 |
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
|
33 |
-
training_args = TrainingArguments(output_dir=
|
34 |
num_train_epochs=epochs,
|
35 |
learning_rate=2e-5,
|
36 |
per_device_train_batch_size=batch_size,
|
37 |
per_device_eval_batch_size=batch_size,
|
38 |
weight_decay=0.01,
|
39 |
evaluation_strategy="epoch",
|
|
|
40 |
disable_tqdm=False,
|
41 |
logging_steps=len(train_dataset)// batch_size,
|
42 |
push_to_hub=True,
|
|
|
43 |
log_level="error")
|
44 |
self.trainer = Trainer(
|
45 |
model=self.model,
|
46 |
args=training_args,
|
47 |
compute_metrics=self._compute_metrics,
|
48 |
-
train_dataset=
|
49 |
-
eval_dataset=
|
50 |
tokenizer=self.tokenizer,
|
51 |
data_collator=data_collator
|
52 |
)
|
53 |
self.trainer.train()
|
|
|
54 |
|
55 |
@staticmethod
|
56 |
def _compute_metrics(pred):
|
@@ -96,9 +99,9 @@ class TransformersSequenceClassifier:
|
|
96 |
return y_preds
|
97 |
|
98 |
@staticmethod
|
99 |
-
def predict_test_data(model_checkpoint,
|
100 |
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
|
101 |
-
preds = pipe_classifier(
|
102 |
return preds
|
103 |
|
104 |
|
|
|
5 |
import numpy as np
|
6 |
import torch.nn.functional as F
|
7 |
import matplotlib.pyplot as plt
|
8 |
+
from typing import List
|
9 |
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
23 |
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
24 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels).to(device)
|
25 |
|
26 |
+
def tokenizer_batch(self, batch):
|
27 |
return self.tokenizer(batch["inputs"], truncation=True) #, max_len=386
|
28 |
|
29 |
+
def tokenize_dataset(self, dataset):
|
30 |
+
return dataset.map(self.tokenizer_batch, batched=True, remove_columns=('inputs', '__index_level_0__'))
|
31 |
+
def train(self, train_dataset, eval_dataset, batch_size, epochs):
|
|
|
32 |
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
|
33 |
+
training_args = TrainingArguments(output_dir=self.model_output_dir,
|
34 |
num_train_epochs=epochs,
|
35 |
learning_rate=2e-5,
|
36 |
per_device_train_batch_size=batch_size,
|
37 |
per_device_eval_batch_size=batch_size,
|
38 |
weight_decay=0.01,
|
39 |
evaluation_strategy="epoch",
|
40 |
+
save_strategy='epoch',
|
41 |
disable_tqdm=False,
|
42 |
logging_steps=len(train_dataset)// batch_size,
|
43 |
push_to_hub=True,
|
44 |
+
load_best_model_at_end=True,
|
45 |
log_level="error")
|
46 |
self.trainer = Trainer(
|
47 |
model=self.model,
|
48 |
args=training_args,
|
49 |
compute_metrics=self._compute_metrics,
|
50 |
+
train_dataset=train_dataset,
|
51 |
+
eval_dataset=eval_dataset,
|
52 |
tokenizer=self.tokenizer,
|
53 |
data_collator=data_collator
|
54 |
)
|
55 |
self.trainer.train()
|
56 |
+
self.trainer.push_to_hub(commit_message="Training completed!")
|
57 |
|
58 |
@staticmethod
|
59 |
def _compute_metrics(pred):
|
|
|
99 |
return y_preds
|
100 |
|
101 |
@staticmethod
|
102 |
+
def predict_test_data(model_checkpoint, test_list: List[str]) -> List:
|
103 |
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
|
104 |
+
preds = pipe_classifier(test_list, return_all_scores=True)
|
105 |
return preds
|
106 |
|
107 |
|
source/services/predicting_effective_arguments/train/seq_classification.py
CHANGED
@@ -7,15 +7,11 @@ from datasets import Dataset, load_metric
|
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from source.services.predicting_effective_arguments.train.model import TransformersSequenceClassifier
|
9 |
|
10 |
-
TARGET = 'discourse_effectiveness'
|
11 |
-
TEXT = "discourse_text"
|
12 |
-
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
13 |
-
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification'
|
14 |
class CFG:
|
15 |
TARGET = 'discourse_effectiveness'
|
16 |
TEXT = "discourse_text"
|
17 |
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
18 |
-
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification'
|
19 |
model_name="debertav3base"
|
20 |
learning_rate=1.5e-5
|
21 |
weight_decay=0.02
|
@@ -28,7 +24,6 @@ class CFG:
|
|
28 |
save_steps=100
|
29 |
max_length=512
|
30 |
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT)
|
32 |
|
33 |
def seed_everything(seed: int):
|
34 |
import random, os
|
@@ -52,17 +47,37 @@ def prepare_input_text(df, sep_token):
|
|
52 |
if __name__ == '__main__':
|
53 |
|
54 |
config = CFG()
|
|
|
55 |
seqClassifer = TransformersSequenceClassifier(model_output_dir=config.MODEL_OUTPUT_DIR, tokenizer=tokenizer, model_checkpoint="distilbert-base-uncased", num_labels=3) #distilbert-base-uncased
|
56 |
data = pd.read_csv("data/raw_data/train.csv")[:100]
|
57 |
test_df = pd.read_csv("data/raw_data/test.csv")
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
train_df = prepare_input_text(train_df, sep_token=tokenizer.sep_token)
|
61 |
valid_df = prepare_input_text(valid_df, sep_token=tokenizer.sep_token)
|
|
|
62 |
|
63 |
-
train_dataset = Dataset.from_pandas(train_df[['inputs', TARGET]]).rename_column(TARGET, 'label').class_encode_column("label")
|
64 |
-
val_dataset = Dataset.from_pandas(valid_df[['inputs', TARGET]]).rename_column(TARGET, 'label').class_encode_column("label")
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
"""
|
68 |
train_df[TARGET].value_counts(ascending=True).plot.barh()
|
|
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from source.services.predicting_effective_arguments.train.model import TransformersSequenceClassifier
|
9 |
|
|
|
|
|
|
|
|
|
10 |
class CFG:
|
11 |
TARGET = 'discourse_effectiveness'
|
12 |
TEXT = "discourse_text"
|
13 |
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
14 |
+
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification/predicting_effective_arguments_distilbert'
|
15 |
model_name="debertav3base"
|
16 |
learning_rate=1.5e-5
|
17 |
weight_decay=0.02
|
|
|
24 |
save_steps=100
|
25 |
max_length=512
|
26 |
|
|
|
27 |
|
28 |
def seed_everything(seed: int):
|
29 |
import random, os
|
|
|
47 |
if __name__ == '__main__':
|
48 |
|
49 |
config = CFG()
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_CHECKPOINT)
|
51 |
seqClassifer = TransformersSequenceClassifier(model_output_dir=config.MODEL_OUTPUT_DIR, tokenizer=tokenizer, model_checkpoint="distilbert-base-uncased", num_labels=3) #distilbert-base-uncased
|
52 |
data = pd.read_csv("data/raw_data/train.csv")[:100]
|
53 |
test_df = pd.read_csv("data/raw_data/test.csv")
|
54 |
+
train_size = 0.7
|
55 |
+
valid_size = 0.2
|
56 |
+
test_size = 0.1
|
57 |
+
|
58 |
+
# First split: Separate out the training set
|
59 |
+
train_df, temp_df = train_test_split(data, test_size=1 - train_size)
|
60 |
+
|
61 |
+
# Second split: Separate out the validation and test sets
|
62 |
+
valid_df, test_df = train_test_split(temp_df, test_size=test_size / (test_size + valid_size))
|
63 |
+
|
64 |
|
65 |
train_df = prepare_input_text(train_df, sep_token=tokenizer.sep_token)
|
66 |
valid_df = prepare_input_text(valid_df, sep_token=tokenizer.sep_token)
|
67 |
+
test_df = prepare_input_text(test_df, sep_token=tokenizer.sep_token)
|
68 |
|
69 |
+
train_dataset = Dataset.from_pandas(train_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
70 |
+
val_dataset = Dataset.from_pandas(valid_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
71 |
+
test_dataset = Dataset.from_pandas(test_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
72 |
+
|
73 |
+
train_tok_dataset = seqClassifer.tokenize_dataset(dataset=train_dataset)
|
74 |
+
val_tok_dataset = seqClassifer.tokenize_dataset(dataset=val_dataset)
|
75 |
+
test_tok_dataset = seqClassifer.tokenize_dataset(dataset=test_dataset)
|
76 |
+
|
77 |
+
seqClassifer.train(train_dataset=train_tok_dataset, eval_dataset=val_tok_dataset, epochs=1, batch_size=16)
|
78 |
+
y_pred = seqClassifer.predict_valid_data(val_tok_dataset)
|
79 |
+
seqClassifer.predict_test_data(model_checkpoint=config.MODEL_OUTPUT_DIR, test_data=test_df['inputs'].tolist())
|
80 |
+
pass
|
81 |
|
82 |
"""
|
83 |
train_df[TARGET].value_counts(ascending=True).plot.barh()
|