Spaces:
Runtime error
Runtime error
add
Browse files
requirements.txt
CHANGED
|
@@ -9,4 +9,5 @@ seqeval==1.2.2
|
|
| 9 |
pandas==2.1.4
|
| 10 |
gradio==4.13.0
|
| 11 |
pydantic_settings==2.1.0
|
| 12 |
-
sentencepiece==0.1.99
|
|
|
|
|
|
| 9 |
pandas==2.1.4
|
| 10 |
gradio==4.13.0
|
| 11 |
pydantic_settings==2.1.0
|
| 12 |
+
sentencepiece==0.1.99
|
| 13 |
+
umap-learn==0.5.5
|
source/services/predicting_effective_arguments/train/model.py
CHANGED
|
@@ -7,6 +7,8 @@ import torch.nn.functional as F
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
from typing import List
|
| 9 |
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
|
|
|
|
|
|
| 10 |
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
|
|
@@ -17,19 +19,41 @@ class TransformersSequenceClassifier:
|
|
| 17 |
model_output_dir,
|
| 18 |
num_labels,
|
| 19 |
tokenizer : AutoTokenizer,
|
|
|
|
|
|
|
| 20 |
model_checkpoint="distilbert-base-uncased"
|
| 21 |
):
|
| 22 |
self.model_output_dir = model_output_dir
|
| 23 |
-
self.tokenizer =
|
| 24 |
-
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels).to(device)
|
| 25 |
|
| 26 |
def tokenizer_batch(self, batch):
|
| 27 |
-
return self.tokenizer(batch["inputs"], truncation=True) #, max_len=386
|
| 28 |
|
| 29 |
def tokenize_dataset(self, dataset):
|
| 30 |
return dataset.map(self.tokenizer_batch, batched=True, remove_columns=('inputs', '__index_level_0__'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def train(self, train_dataset, eval_dataset, batch_size, epochs):
|
| 32 |
-
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
|
| 33 |
training_args = TrainingArguments(output_dir=self.model_output_dir,
|
| 34 |
num_train_epochs=epochs,
|
| 35 |
learning_rate=2e-5,
|
|
@@ -39,7 +63,7 @@ class TransformersSequenceClassifier:
|
|
| 39 |
evaluation_strategy="epoch",
|
| 40 |
save_strategy='epoch',
|
| 41 |
disable_tqdm=False,
|
| 42 |
-
logging_steps=len(train_dataset)//
|
| 43 |
push_to_hub=True,
|
| 44 |
load_best_model_at_end=True,
|
| 45 |
log_level="error")
|
|
@@ -50,7 +74,7 @@ class TransformersSequenceClassifier:
|
|
| 50 |
train_dataset=train_dataset,
|
| 51 |
eval_dataset=eval_dataset,
|
| 52 |
tokenizer=self.tokenizer,
|
| 53 |
-
data_collator=data_collator
|
| 54 |
)
|
| 55 |
self.trainer.train()
|
| 56 |
self.trainer.push_to_hub(commit_message="Training completed!")
|
|
@@ -83,15 +107,15 @@ class TransformersSequenceClassifier:
|
|
| 83 |
return valid_dataset.map(self.forward_pass_with_label, batched=True, batch_size=16)
|
| 84 |
|
| 85 |
@staticmethod
|
| 86 |
-
def plot_confusion_matrix(y_preds, y_true,
|
| 87 |
cm = confusion_matrix(y_true, y_preds, normalize="true")
|
| 88 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 89 |
-
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=
|
| 90 |
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
|
| 91 |
plt.title("Normalized confusion matrix")
|
| 92 |
plt.show()
|
| 93 |
|
| 94 |
-
def
|
| 95 |
#trainer = Trainer(model=self.model)
|
| 96 |
preds_output = self.trainer.predict(valid_dataset)
|
| 97 |
print(preds_output.metrics)
|
|
@@ -99,7 +123,7 @@ class TransformersSequenceClassifier:
|
|
| 99 |
return y_preds
|
| 100 |
|
| 101 |
@staticmethod
|
| 102 |
-
def
|
| 103 |
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
|
| 104 |
preds = pipe_classifier(test_list, return_all_scores=True)
|
| 105 |
return preds
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
from typing import List
|
| 9 |
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 10 |
+
from umap import UMAP
|
| 11 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 12 |
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
|
|
|
|
| 19 |
model_output_dir,
|
| 20 |
num_labels,
|
| 21 |
tokenizer : AutoTokenizer,
|
| 22 |
+
id2label,
|
| 23 |
+
label2id,
|
| 24 |
model_checkpoint="distilbert-base-uncased"
|
| 25 |
):
|
| 26 |
self.model_output_dir = model_output_dir
|
| 27 |
+
self.tokenizer = tokenizer
|
| 28 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels, id2label=id2label, label2id=label2id).to(device)
|
| 29 |
|
| 30 |
def tokenizer_batch(self, batch):
|
| 31 |
+
return self.tokenizer(batch["inputs"], truncation=True, padding=True, return_tensors="pt") #, max_len=386
|
| 32 |
|
| 33 |
def tokenize_dataset(self, dataset):
|
| 34 |
return dataset.map(self.tokenizer_batch, batched=True, remove_columns=('inputs', '__index_level_0__'))
|
| 35 |
+
|
| 36 |
+
@staticmethod
|
| 37 |
+
def extract_hidden_states(batch, tokenizer, model):
|
| 38 |
+
# Place model inputs on the GPU
|
| 39 |
+
inputs = {k:v for k,v in batch.items() if k in tokenizer.model_input_names} #.to(device)
|
| 40 |
+
# Extract last hidden states
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
last_hidden_state = model(**inputs).last_hidden_state
|
| 43 |
+
# Return vector for [CLS] token
|
| 44 |
+
return {"hidden_state": last_hidden_state[:,0].cpu().numpy()}
|
| 45 |
+
|
| 46 |
+
@staticmethod
|
| 47 |
+
def fit_umap(df_x):
|
| 48 |
+
# Scale features to [0,1] range
|
| 49 |
+
X_scaled = MinMaxScaler().fit_transform(df_x)
|
| 50 |
+
# Initialize and fit UMAP
|
| 51 |
+
mapper = UMAP(n_components=2, metric="cosine").fit(X_scaled)
|
| 52 |
+
return mapper.embedding_
|
| 53 |
+
# Create a DataFrame of 2D embeddings
|
| 54 |
+
|
| 55 |
def train(self, train_dataset, eval_dataset, batch_size, epochs):
|
| 56 |
+
#data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
|
| 57 |
training_args = TrainingArguments(output_dir=self.model_output_dir,
|
| 58 |
num_train_epochs=epochs,
|
| 59 |
learning_rate=2e-5,
|
|
|
|
| 63 |
evaluation_strategy="epoch",
|
| 64 |
save_strategy='epoch',
|
| 65 |
disable_tqdm=False,
|
| 66 |
+
logging_steps=len(train_dataset)//batch_size,
|
| 67 |
push_to_hub=True,
|
| 68 |
load_best_model_at_end=True,
|
| 69 |
log_level="error")
|
|
|
|
| 74 |
train_dataset=train_dataset,
|
| 75 |
eval_dataset=eval_dataset,
|
| 76 |
tokenizer=self.tokenizer,
|
| 77 |
+
#data_collator=data_collator
|
| 78 |
)
|
| 79 |
self.trainer.train()
|
| 80 |
self.trainer.push_to_hub(commit_message="Training completed!")
|
|
|
|
| 107 |
return valid_dataset.map(self.forward_pass_with_label, batched=True, batch_size=16)
|
| 108 |
|
| 109 |
@staticmethod
|
| 110 |
+
def plot_confusion_matrix(y_preds, y_true, label_names):
|
| 111 |
cm = confusion_matrix(y_true, y_preds, normalize="true")
|
| 112 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 113 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=label_names)
|
| 114 |
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
|
| 115 |
plt.title("Normalized confusion matrix")
|
| 116 |
plt.show()
|
| 117 |
|
| 118 |
+
def predict_argmax_logit(self, valid_dataset):
|
| 119 |
#trainer = Trainer(model=self.model)
|
| 120 |
preds_output = self.trainer.predict(valid_dataset)
|
| 121 |
print(preds_output.metrics)
|
|
|
|
| 123 |
return y_preds
|
| 124 |
|
| 125 |
@staticmethod
|
| 126 |
+
def predict_pipeline(model_checkpoint, test_list: List[str]) -> List:
|
| 127 |
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
|
| 128 |
preds = pipe_classifier(test_list, return_all_scores=True)
|
| 129 |
return preds
|
source/services/predicting_effective_arguments/train/train_seq_classification.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from datasets import Dataset, load_metric
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
from source.services.predicting_effective_arguments.train.model import TransformersSequenceClassifier
|
| 9 |
+
|
| 10 |
+
class CFG:
|
| 11 |
+
TARGET = 'discourse_effectiveness'
|
| 12 |
+
TEXT = "discourse_text"
|
| 13 |
+
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
| 14 |
+
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification/predicting_effective_arguments_distilbert'
|
| 15 |
+
model_name="debertav3base"
|
| 16 |
+
learning_rate=1.5e-5
|
| 17 |
+
weight_decay=0.02
|
| 18 |
+
hidden_dropout_prob=0.007
|
| 19 |
+
attention_probs_dropout_prob=0.007
|
| 20 |
+
num_train_epochs=10
|
| 21 |
+
n_splits=4
|
| 22 |
+
batch_size=12
|
| 23 |
+
random_seed=42
|
| 24 |
+
save_steps=100
|
| 25 |
+
max_length=512
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def seed_everything(seed: int):
|
| 29 |
+
import random, os
|
| 30 |
+
import numpy as np
|
| 31 |
+
import torch
|
| 32 |
+
|
| 33 |
+
random.seed(seed)
|
| 34 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 35 |
+
np.random.seed(seed)
|
| 36 |
+
torch.manual_seed(seed)
|
| 37 |
+
torch.cuda.manual_seed(seed)
|
| 38 |
+
torch.backends.cudnn.deterministic = True
|
| 39 |
+
torch.backends.cudnn.benchmark = True
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def prepare_input_text(df, sep_token):
|
| 43 |
+
df['inputs'] = df.discourse_type.str.lower() + ' ' + sep_token + ' ' + df.discourse_text.str.lower()
|
| 44 |
+
return df
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if __name__ == '__main__':
|
| 48 |
+
|
| 49 |
+
config = CFG()
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_CHECKPOINT)
|
| 51 |
+
|
| 52 |
+
data = pd.read_csv("data/raw_data/train.csv")[:100]
|
| 53 |
+
label_names = list(data[config.TARGET].unique())
|
| 54 |
+
#score_df = pd.read_csv("data/raw_data/test.csv")
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
+
data[TARGET].value_counts(ascending=True).plot.barh()
|
| 58 |
+
plt.title("Frequency of Classes")
|
| 59 |
+
plt.show()
|
| 60 |
+
|
| 61 |
+
data['discourse_type'].value_counts(ascending=True).plot.barh()
|
| 62 |
+
plt.title("Frequency of discourse_type")
|
| 63 |
+
plt.show()
|
| 64 |
+
|
| 65 |
+
data["Words Per text"] = data[TEXT].str.split().apply(len)
|
| 66 |
+
data.boxplot("Words Per text", by=TARGET, grid=False, showfliers=False,
|
| 67 |
+
color="black")
|
| 68 |
+
plt.suptitle("")
|
| 69 |
+
plt.xlabel("")
|
| 70 |
+
plt.show()
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
train_size = 0.7
|
| 74 |
+
valid_size = 0.2
|
| 75 |
+
test_size = 0.1
|
| 76 |
+
|
| 77 |
+
# First split: Separate out the training set
|
| 78 |
+
train_df, temp_df = train_test_split(data, test_size=1 - train_size, random_state=5600)
|
| 79 |
+
|
| 80 |
+
# Second split: Separate out the validation and test sets
|
| 81 |
+
valid_df, test_df = train_test_split(temp_df, test_size=test_size / (test_size + valid_size), random_state=5600)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
train_df = prepare_input_text(train_df, sep_token=tokenizer.sep_token)
|
| 85 |
+
valid_df = prepare_input_text(valid_df, sep_token=tokenizer.sep_token)
|
| 86 |
+
test_df = prepare_input_text(test_df, sep_token=tokenizer.sep_token)
|
| 87 |
+
|
| 88 |
+
train_dataset = Dataset.from_pandas(train_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
| 89 |
+
val_dataset = Dataset.from_pandas(valid_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
| 90 |
+
test_dataset = Dataset.from_pandas(test_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
| 91 |
+
|
| 92 |
+
id2label = {i: label for i, label in enumerate(label_names)}
|
| 93 |
+
label2id = {v: k for k, v in id2label.items()}
|
| 94 |
+
seqClassifer = TransformersSequenceClassifier(model_output_dir=config.MODEL_OUTPUT_DIR,
|
| 95 |
+
tokenizer=tokenizer,
|
| 96 |
+
model_checkpoint="distilbert-base-uncased",
|
| 97 |
+
num_labels=3,
|
| 98 |
+
id2label=id2label,
|
| 99 |
+
label2id=label2id)
|
| 100 |
+
|
| 101 |
+
train_tok_dataset = seqClassifer.tokenize_dataset(dataset=train_dataset)
|
| 102 |
+
val_tok_dataset = seqClassifer.tokenize_dataset(dataset=val_dataset)
|
| 103 |
+
test_tok_dataset = seqClassifer.tokenize_dataset(dataset=test_dataset)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
seqClassifer.train(train_dataset=train_tok_dataset, eval_dataset=val_tok_dataset, epochs=1, batch_size=16)
|
| 108 |
+
|
| 109 |
+
y_test_pred = seqClassifer.predict_argmax_logit(test_tok_dataset)
|
| 110 |
+
seqClassifer.plot_confusion_matrix(y_preds=y_test_pred, y_true=test_dataset['label'], label_names=label_names)
|
| 111 |
+
|
| 112 |
+
y_pred = seqClassifer.predict_pipeline(model_checkpoint=config.MODEL_OUTPUT_DIR, test_list=test_df['inputs'].tolist())
|
| 113 |
+
#hidden = train_tok_dataset.map(seqClassifer.extract_hidden_states,
|
| 114 |
+
# batched=True,
|
| 115 |
+
# fn_kwargs={'tokenizer': AutoTokenizer.from_pretrained(config.MODEL_OUTPUT_DIR),
|
| 116 |
+
# 'model': AutoModelForSequenceClassification.from_pretrained(config.MODEL_OUTPUT_DIR)})
|
| 117 |
+
|
| 118 |
+
pass
|
| 119 |
+
|