import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import protac_degradation_predictor as pdp from collections import defaultdict import warnings import logging from typing import Literal from sklearn.preprocessing import OrdinalEncoder from tqdm import tqdm import pandas as pd import numpy as np import pytorch_lightning as pl from rdkit import DataStructs root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) root.addHandler(handler) def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index: """ Get the indices of the test set using a random split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. test_split (float): The percentage of the active PROTACs to use as the test set. Returns: pd.Index: The indices of the test set. """ test_df = active_df.sample(frac=test_split, random_state=42) return test_df.index def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index: """ Get the indices of the test set using the E3 ligase split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. Returns: pd.Index: The indices of the test set. """ encoder = OrdinalEncoder() active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int) test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')] return test_df.index def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple: """ Get the SMILES to fingerprint dictionary and the average Tanimoto similarity. Args: protac_df (pd.DataFrame): The DataFrame containing the PROTACs. Returns: tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity. """ unique_smiles = protac_df['Smiles'].unique().tolist() smiles2fp = {} for smiles in tqdm(unique_smiles, desc='Precomputing fingerprints'): smiles2fp[smiles] = pdp.get_fingerprint(smiles) # # Get the pair-wise tanimoto similarity between the PROTAC fingerprints # tanimoto_matrix = defaultdict(list) # for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')): # fp1 = smiles2fp[smiles1] # # TODO: Use BulkTanimotoSimilarity for better performance # for j, smiles2 in enumerate(protac_df['Smiles'].unique()[i:]): # fp2 = smiles2fp[smiles2] # tanimoto_dist = 1 - DataStructs.TanimotoSimilarity(fp1, fp2) # tanimoto_matrix[smiles1].append(tanimoto_dist) # avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()} # protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto) tanimoto_matrix = defaultdict(list) fps = list(smiles2fp.values()) # Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity for i, (smiles1, fp1) in enumerate(tqdm(zip(unique_smiles, fps), desc='Computing Tanimoto similarity', total=len(fps))): similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:]) # Only compute for i to end, avoiding duplicates for j, similarity in enumerate(similarities): distance = 1 - similarity tanimoto_matrix[smiles1].append(distance) # Store as distance if i != i + j: tanimoto_matrix[unique_smiles[i + j]].append(distance) # Symmetric filling # Calculate average Tanimoto distance for each unique SMILES avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()} protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto) smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()} return smiles2fp, protac_df def get_tanimoto_split_indices( active_df: pd.DataFrame, active_col: str, test_split: float, n_bins_tanimoto: int = 200, ) -> pd.Index: """ Get the indices of the test set using the Tanimoto-based split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity. Returns: pd.Index: The indices of the test set. """ tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy() encoder = OrdinalEncoder() active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int) # Sort the groups so that samples with the highest tanimoto similarity, # i.e., the "less similar" ones, are placed in the test set first tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index test_df = [] # For each group, get the number of active and inactive entries. Then, add those # entries to the test_df if: 1) the test_df lenght + the group entries is less # 20% of the active_df lenght, and 2) the percentage of True and False entries # in the active_col in test_df is roughly 50%. for group in tanimoto_groups: group_df = active_df[active_df['Tanimoto Group'] == group] if test_df == []: test_df.append(group_df) continue num_entries = len(group_df) num_active_group = group_df[active_col].sum() num_inactive_group = num_entries - num_active_group tmp_test_df = pd.concat(test_df) num_entries_test = len(tmp_test_df) num_active_test = tmp_test_df[active_col].sum() num_inactive_test = num_entries_test - num_active_test # Check if the group entries can be added to the test_df if num_entries_test + num_entries < test_split * len(active_df): # Add anything at the beggining if num_entries_test + num_entries < test_split / 2 * len(active_df): test_df.append(group_df) continue # Be more selective and make sure that the percentage of active and # inactive is balanced if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6: if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6: test_df.append(group_df) test_df = pd.concat(test_df) return test_df.index def get_target_split_indices(active_df: pd.DataFrame, active_col: str, test_split: float) -> pd.Index: """ Get the indices of the test set using the target-based split. Args: active_df (pd.DataFrame): The DataFrame containing the active PROTACs. active_col (str): The column containing the active/inactive information. test_split (float): The percentage of the active PROTACs to use as the test set. Returns: pd.Index: The indices of the test set. """ encoder = OrdinalEncoder() active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int) test_df = [] # For each group, get the number of active and inactive entries. Then, add those # entries to the test_df if: 1) the test_df lenght + the group entries is less # 20% of the active_df lenght, and 2) the percentage of True and False entries # in the active_col in test_df is roughly 50%. # Start the loop from the groups containing the smallest number of entries. for group in reversed(active_df['Uniprot'].value_counts().index): group_df = active_df[active_df['Uniprot'] == group] if test_df == []: test_df.append(group_df) continue num_entries = len(group_df) num_active_group = group_df[active_col].sum() num_inactive_group = num_entries - num_active_group tmp_test_df = pd.concat(test_df) num_entries_test = len(tmp_test_df) num_active_test = tmp_test_df[active_col].sum() num_inactive_test = num_entries_test - num_active_test # Check if the group entries can be added to the test_df if num_entries_test + num_entries < test_split * len(active_df): # Add anything at the beggining if num_entries_test + num_entries < test_split / 2 * len(active_df): test_df.append(group_df) continue # Be more selective and make sure that the percentage of active and # inactive is balanced if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6: if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6: test_df.append(group_df) test_df = pd.concat(test_df) return test_df.index def main( active_col: str = 'Active (Dmax 0.6, pDC50 6.0)', test_split: float = 0.1, studies: str | Literal['all', 'standard', 'e3_ligase', 'similarity', 'target'] = 'all', ): """ Get and save the datasets for the different studies. Args: active_col (str): The column containing the active/inactive information. It should be in the format 'Active (Dmax N, pDC50 M)', where N and M are the thresholds float values for Dmax and pDC50, respectively. test_split (float): The percentage of the active PROTACs to use as the test set. studies (str): The type of studies to save dataset for. Options: 'all', 'standard', 'e3_ligase', 'similarity', 'target'. """ pl.seed_everything(42) # Set the Column to Predict active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '') # Get Dmax_threshold from the active_col Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip()) pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip()) # Load the PROTAC dataset protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv') # Map E3 Ligase Iap to IAP protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP') protac_df[active_col] = protac_df.apply( lambda x: pdp.is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1 ) _, protac_df = get_smiles2fp_and_avg_tanimoto(protac_df) ## Get the test sets test_indeces = {} active_df = protac_df[protac_df[active_col].notna()].copy() # Remove legacy column 'Active - OR' if it exists if 'Active - OR' in active_df.columns: active_df.drop(columns='Active - OR', inplace=True) if studies == 'standard' or studies == 'all': test_indeces['standard'] = get_random_split_indices(active_df, test_split) if studies == 'target' or studies == 'all': test_indeces['target'] = get_target_split_indices(active_df, active_col, test_split) if studies == 'e3_ligase' or studies == 'all': test_indeces['e3_ligase'] = get_e3_ligase_split_indices(active_df) if studies == 'similarity' or studies == 'all': test_indeces['similarity'] = get_tanimoto_split_indices(active_df, active_col, test_split) # Make directory for studies datasets if it does not exist data_dir = '../data/studies' if not os.path.exists(data_dir): os.makedirs(data_dir) # Cross-Validation Training for split_type, indeces in test_indeces.items(): test_df = active_df.loc[indeces].copy() train_val_df = active_df[~active_df.index.isin(test_df.index)].copy() # Save the datasets train_val_perc = f'{int((1 - test_split) * 100)}' test_perc = f'{int(test_split * 100)}' train_val_filename = f'{data_dir}/{split_type}_train_val_{train_val_perc}split_{active_name}.csv' test_filename = f'{data_dir}/{split_type}_test_{test_perc}split_{active_name}.csv' print('') print(f'Saving train_val datasets as: {train_val_filename}') print(f'Saving test datasets as: {test_filename}') train_val_df.to_csv(train_val_filename, index=False) test_df.to_csv(test_filename, index=False) if __name__ == '__main__': main()