Commit
·
2ca0a98
1
Parent(s):
9f58169
Added updated version of PROTAC-DB and starting applying data curation to it
Browse files- data/PROTAC-DB-v2.csv +0 -0
- notebooks/data_curation_v2.ipynb +1020 -0
data/PROTAC-DB-v2.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/data_curation_v2.ipynb
ADDED
@@ -0,0 +1,1020 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# from IPython.display import display_html\n",
|
10 |
+
"\n",
|
11 |
+
"import logging\n",
|
12 |
+
"import warnings\n",
|
13 |
+
"import re\n",
|
14 |
+
"import os\n",
|
15 |
+
"import numpy as np\n",
|
16 |
+
"import pandas as pd\n",
|
17 |
+
"import pickle\n",
|
18 |
+
"import pickle\n",
|
19 |
+
"import requests\n",
|
20 |
+
"import matplotlib.pyplot as plt\n",
|
21 |
+
"import seaborn as sns\n",
|
22 |
+
"from rdkit import Chem\n",
|
23 |
+
"from rdkit.Chem import AllChem\n",
|
24 |
+
"from typing import Literal, Union, List, Dict, Any, Callable\n",
|
25 |
+
"from collections import defaultdict\n",
|
26 |
+
"from tqdm.auto import tqdm\n",
|
27 |
+
"from rdkit import RDLogger\n",
|
28 |
+
"\n",
|
29 |
+
"RDLogger.DisableLog('rdApp.*')"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 3,
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"def set_global_logging_level(level=logging.ERROR, prefices=[\"\"]):\n",
|
39 |
+
" \"\"\"\n",
|
40 |
+
" Override logging levels of different modules based on their name as a prefix.\n",
|
41 |
+
" It needs to be invoked after the modules have been loaded so that their loggers have been initialized.\n",
|
42 |
+
"\n",
|
43 |
+
" Args:\n",
|
44 |
+
" - level: desired level. e.g. logging.INFO. Optional. Default is logging.ERROR\n",
|
45 |
+
" - prefices: list of one or more str prefices to match (e.g. [\"transformers\", \"torch\"]). Optional.\n",
|
46 |
+
" Default is `[\"\"]` to match all active loggers.\n",
|
47 |
+
" The match is a case-sensitive `module_name.startswith(prefix)`\n",
|
48 |
+
" \"\"\"\n",
|
49 |
+
" prefix_re = re.compile(fr'^(?:{ \"|\".join(prefices) })')\n",
|
50 |
+
" for name in logging.root.manager.loggerDict:\n",
|
51 |
+
" if re.match(prefix_re, name):\n",
|
52 |
+
" logging.getLogger(name).setLevel(level)\n",
|
53 |
+
"\n",
|
54 |
+
"\n",
|
55 |
+
"# Filter out annoying Pytorch Lightning printouts\n",
|
56 |
+
"warnings.filterwarnings('ignore')\n",
|
57 |
+
"warnings.filterwarnings(\n",
|
58 |
+
" 'ignore', '.*Covariance of the parameters could not be estimated.*')\n",
|
59 |
+
"warnings.filterwarnings(\n",
|
60 |
+
" 'ignore', '.*You seem to be using the pipelines sequentially on GPU.*')"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 4,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"# data_dir = os.path.join(os.getcwd(), '..', 'data')\n",
|
70 |
+
"data_dir = os.path.join(os.getcwd(), 'data')\n",
|
71 |
+
"dirs_to_make = [\n",
|
72 |
+
" data_dir,\n",
|
73 |
+
" # os.path.join(data_dir, 'raw'),\n",
|
74 |
+
" # os.path.join(data_dir, 'processed'),\n",
|
75 |
+
"]\n",
|
76 |
+
"for d in dirs_to_make:\n",
|
77 |
+
" if not os.path.exists(d):\n",
|
78 |
+
" os.makedirs(d)"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 5,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [
|
86 |
+
{
|
87 |
+
"name": "stdout",
|
88 |
+
"output_type": "stream",
|
89 |
+
"text": [
|
90 |
+
"Loaded protac.csv\n"
|
91 |
+
]
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"source": [
|
95 |
+
"protacdb_file = os.path.join(data_dir, 'PROTAC-DB.csv')\n",
|
96 |
+
"protac_df = pd.read_csv(protacdb_file).reset_index(drop=True)\n",
|
97 |
+
"\n",
|
98 |
+
"protacdb_file = os.path.join(data_dir, 'PROTAC-DB-v2.csv')\n",
|
99 |
+
"protac_v2_df = pd.read_csv(protacdb_file).reset_index(drop=True)\n",
|
100 |
+
"\n",
|
101 |
+
"print(f'Loaded protac.csv')\n",
|
102 |
+
"\n",
|
103 |
+
"old2new = {\n",
|
104 |
+
" 'E3 ligase': 'E3 Ligase',\n",
|
105 |
+
"}\n",
|
106 |
+
"protac_df = protac_df.rename(columns=old2new)\n",
|
107 |
+
"protac_v2_df = protac_v2_df.rename(columns=old2new)"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 6,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [
|
115 |
+
{
|
116 |
+
"data": {
|
117 |
+
"text/plain": [
|
118 |
+
"(9380, 5388)"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
"execution_count": 6,
|
122 |
+
"metadata": {},
|
123 |
+
"output_type": "execute_result"
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"source": [
|
127 |
+
"len(protac_v2_df), len(protac_df)"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 7,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [
|
135 |
+
{
|
136 |
+
"name": "stdout",
|
137 |
+
"output_type": "stream",
|
138 |
+
"text": [
|
139 |
+
"PROTAC-DB\n",
|
140 |
+
"Number of rows with all 3: 344\n",
|
141 |
+
"Number of rows with Assay: 1008\n",
|
142 |
+
"Number of rows with both DC50 and Dmax: 344\n",
|
143 |
+
"Number of rows with DC50: 905\n",
|
144 |
+
"Number of rows with Dmax: 726\n",
|
145 |
+
"Number of rows with Percent degradation: 362\n",
|
146 |
+
"\n",
|
147 |
+
"PROTAC-DB-v2\n",
|
148 |
+
"Number of rows with all 3: 909\n",
|
149 |
+
"Number of rows with Assay: 1892\n",
|
150 |
+
"Number of rows with both DC50 and Dmax: 909\n",
|
151 |
+
"Number of rows with DC50: 1762\n",
|
152 |
+
"Number of rows with Dmax: 1317\n",
|
153 |
+
"Number of rows with Percent degradation: 1422\n"
|
154 |
+
]
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"source": [
|
158 |
+
"def print_dmax_dc_info(df):\n",
|
159 |
+
" num_all_notna = len(df.dropna(subset=['Assay (DC50/Dmax)', 'DC50 (nM)', 'Dmax (%)']).dropna(how='all').drop_duplicates())\n",
|
160 |
+
" num_assay_notna = len(df.dropna(subset=['Assay (DC50/Dmax)']).dropna(how='all').drop_duplicates())\n",
|
161 |
+
" num_both_notna = len(df.dropna(subset=['DC50 (nM)', 'Dmax (%)']).dropna(how='all').drop_duplicates())\n",
|
162 |
+
" num_dmax_notna = len(df.dropna(subset=['Dmax (%)']).dropna(how='all').drop_duplicates())\n",
|
163 |
+
" num_dc50_notna = len(df.dropna(subset=['DC50 (nM)']).dropna(how='all').drop_duplicates())\n",
|
164 |
+
" num_degr_notna = len(df.dropna(subset=['Percent degradation (%)']).dropna(how='all').drop_duplicates())\n",
|
165 |
+
" print(f'Number of rows with all 3: {num_all_notna}')\n",
|
166 |
+
" print(f'Number of rows with Assay: {num_assay_notna}')\n",
|
167 |
+
" print(f'Number of rows with both DC50 and Dmax: {num_both_notna}')\n",
|
168 |
+
" print(f'Number of rows with DC50: {num_dc50_notna}')\n",
|
169 |
+
" print(f'Number of rows with Dmax: {num_dmax_notna}')\n",
|
170 |
+
" print(f'Number of rows with Percent degradation: {num_degr_notna}')\n",
|
171 |
+
"\n",
|
172 |
+
"print('PROTAC-DB')\n",
|
173 |
+
"print_dmax_dc_info(protac_df)\n",
|
174 |
+
"print('')\n",
|
175 |
+
"print('PROTAC-DB-v2')\n",
|
176 |
+
"print_dmax_dc_info(protac_v2_df)"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": 8,
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"name": "stdout",
|
186 |
+
"output_type": "stream",
|
187 |
+
"text": [
|
188 |
+
"[-100.0, -5.0, nan, 90.317, 1000.0, nan]\n",
|
189 |
+
"[0.0]\n",
|
190 |
+
"[96.0, 73.0]\n",
|
191 |
+
"[1.0, 3.14]\n"
|
192 |
+
]
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"source": [
|
196 |
+
"def clean_string(s: str) -> str:\n",
|
197 |
+
" \"\"\" Clean a string by removing <, >, =, NaN, and ranges like 100-200.\n",
|
198 |
+
" Args:\n",
|
199 |
+
" s(str): string to clean\n",
|
200 |
+
" Returns:\n",
|
201 |
+
" str: cleaned string\n",
|
202 |
+
" \"\"\"\n",
|
203 |
+
" if pd.isnull(s) or s in {'nan', 'n/a', 'NaN', ''}:\n",
|
204 |
+
" return np.nan\n",
|
205 |
+
" if 'N.D.' in s:\n",
|
206 |
+
" return '0'\n",
|
207 |
+
" s = s.strip('(WB)').strip()\n",
|
208 |
+
" # # Combine regex operations for efficiency\n",
|
209 |
+
" # s = re.sub(r'[<=>]|NaN|[\\d]+[-~]', '', s) # Remove <, >, =, NaN, and ranges like 100-200\n",
|
210 |
+
" # Remove <, >, =, NaN\n",
|
211 |
+
" s = re.sub(r'[<=>]|NaN', '', s)\n",
|
212 |
+
" # Replace ranges like 100-200 or 1~3 with the left-most value in the range\n",
|
213 |
+
" s = re.sub(r'\\b(\\d+)[-~]\\d+\\b', r'\\1', s)\n",
|
214 |
+
" # Replace (n/a) with nan\n",
|
215 |
+
" s = s.replace('(n/a)', 'nan')\n",
|
216 |
+
" s = re.sub(r'[~<=>% ]', '', s) # Remove ~, <, >, =, % and spaces\n",
|
217 |
+
" return s\n",
|
218 |
+
"\n",
|
219 |
+
"\n",
|
220 |
+
"def split_clean_str(s: str, return_floats: bool = False) -> Union[List[str], List[float]]:\n",
|
221 |
+
" \"\"\" Split a string by '/' and clean each part.\n",
|
222 |
+
" Args:\n",
|
223 |
+
" s(str): string to split\n",
|
224 |
+
" return_floats(bool): whether to return floats or strings\n",
|
225 |
+
" Returns:\n",
|
226 |
+
" list: list of cleaned strings or floats\n",
|
227 |
+
" \"\"\"\n",
|
228 |
+
" if pd.isnull(s) or s in {'nan', 'n/a', 'NaN', ''}:\n",
|
229 |
+
" return np.nan\n",
|
230 |
+
" cleaned_values = [clean_string(part.strip())\n",
|
231 |
+
" for part in s.replace('(n/a)', 'nan').split('/')]\n",
|
232 |
+
" return [float(value) if return_floats else value for value in cleaned_values]\n",
|
233 |
+
"\n",
|
234 |
+
"\n",
|
235 |
+
"print(split_clean_str('-100-200/-5/(n/a)/<=90.317/>1000/NaN', return_floats=True))\n",
|
236 |
+
"print(split_clean_str('N.D.', return_floats=True))\n",
|
237 |
+
"print(split_clean_str('96/73 (WB)', return_floats=True))\n",
|
238 |
+
"print(split_clean_str('1.0~3/3.14', return_floats=True))"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 9,
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [
|
246 |
+
{
|
247 |
+
"name": "stdout",
|
248 |
+
"output_type": "stream",
|
249 |
+
"text": [
|
250 |
+
"813\n",
|
251 |
+
"848\n"
|
252 |
+
]
|
253 |
+
}
|
254 |
+
],
|
255 |
+
"source": [
|
256 |
+
"def get_assay_texts(df: pd.DataFrame, assay_column: str) -> List[str]:\n",
|
257 |
+
" tmp = df[assay_column].dropna()\n",
|
258 |
+
" if tmp.empty:\n",
|
259 |
+
" return []\n",
|
260 |
+
" return tmp.unique().tolist()\n",
|
261 |
+
"\n",
|
262 |
+
"\n",
|
263 |
+
"def clean_assay_text(assay):\n",
|
264 |
+
" tmp = assay.replace('/', ' and ')\n",
|
265 |
+
" tmp = tmp.replace('BRD4 BD1 and 2', 'BRD4 BD1 and BRD4 BD2')\n",
|
266 |
+
" tmp = tmp.replace('(Ba and F3 WT)', '(Ba/F3 WT)')\n",
|
267 |
+
" tmp = tmp.replace('(EGFR L858R and T790M)', '(EGFR L858R/T790M)')\n",
|
268 |
+
" return tmp\n",
|
269 |
+
"\n",
|
270 |
+
"\n",
|
271 |
+
"assays = {}\n",
|
272 |
+
"for c in protac_df.columns:\n",
|
273 |
+
" if 'Assay' in c:\n",
|
274 |
+
" assays[c] = get_assay_texts(protac_df, c)\n",
|
275 |
+
"texts = list(set([x for y in assays.values() for x in y]))\n",
|
276 |
+
"print(len(texts))\n",
|
277 |
+
"print(sum([len(x) for x in assays.values()]))"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": 10,
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"def extract_dc50_info(sentence):\n",
|
287 |
+
" # Regex patterns for proteins/genes, cell types, and treatment hours\n",
|
288 |
+
" protein_regex = r\"Degradation of total\\s(.+?)\\s(in|after|using|proteins)\"\n",
|
289 |
+
" cell_regex = r\"in\\s([A-Za-z0-9-/.;\\(\\)\\s\\+]+)\\scells\"\n",
|
290 |
+
" treatment_regex = r\"after\\s(\\d+/?\\d*?/?\\d*?\\s?h)\"\n",
|
291 |
+
"\n",
|
292 |
+
" # Extracting protein information\n",
|
293 |
+
" if 'total' in sentence.lower():\n",
|
294 |
+
" protein_match = re.search(protein_regex, sentence)\n",
|
295 |
+
" proteins = protein_match.group(1).split(' and ') if protein_match else [\n",
|
296 |
+
" re.search(r\"Degradation of\\s([A-Za-z0-9-]+)\", sentence).group(1)]\n",
|
297 |
+
" else:\n",
|
298 |
+
" if ' in ' in sentence.lower():\n",
|
299 |
+
" proteins = sentence.split(' in ')[0].split('Degradation of ')[-1]\n",
|
300 |
+
" proteins = proteins.split('/') if '/' in proteins else [proteins]\n",
|
301 |
+
" else:\n",
|
302 |
+
" protein_match = re.search(protein_regex, sentence)\n",
|
303 |
+
" proteins = protein_match.group(1).split(\n",
|
304 |
+
" '/') if protein_match else [re.search(r\"Degradation of\\s([A-Za-z0-9-\\/]+)\", sentence).group(1)]\n",
|
305 |
+
" # Handle special cases...\n",
|
306 |
+
" if 'BRD4 short/long' in sentence:\n",
|
307 |
+
" proteins = ['BRD4 short', 'BRD4 long']\n",
|
308 |
+
" if 'BRD4 BD1/2' in sentence:\n",
|
309 |
+
" proteins = ['BRD4 BD1', 'BRD4 BD2']\n",
|
310 |
+
" elif 'BRD4 BD1' in sentence:\n",
|
311 |
+
" proteins = ['BRD4 BD1']\n",
|
312 |
+
" if 'EGFR L858R/T790M' in sentence:\n",
|
313 |
+
" proteins = ['EGFR L858R/T790M']\n",
|
314 |
+
" if 'EGFR del19/T790M/C797S' in sentence:\n",
|
315 |
+
" proteins = ['EGFR del19/T790M/C797S']\n",
|
316 |
+
"\n",
|
317 |
+
" # Extracting cell types\n",
|
318 |
+
" cell_match = re.search(cell_regex, sentence)\n",
|
319 |
+
" cells = cell_match.group(1).split('/') if cell_match else np.nan\n",
|
320 |
+
" # Handle special cases...\n",
|
321 |
+
" if 'Ba/F3' in sentence:\n",
|
322 |
+
" # Replace any occurences that contain 'Ba' or 'F3' with 'Ba/F3' and remove duplicates while preserving the order in the other cells\n",
|
323 |
+
" cells = ['Ba/F3' if 'Ba' in c or 'F3' in c else c for c in cells]\n",
|
324 |
+
" cells.pop(cells.index('Ba/F3'))\n",
|
325 |
+
" if 'ER-positive breast cancer cell lines' in sentence:\n",
|
326 |
+
" cells = ['ER-positive breast cancer cell lines']\n",
|
327 |
+
" if 'LNCaP (AR T878A)' in sentence:\n",
|
328 |
+
" cells = ['LNCaP']\n",
|
329 |
+
" if 'in A152T neurons' in sentence:\n",
|
330 |
+
" cells = ['A152T neurons']\n",
|
331 |
+
" if 'of Rpn13 in MM.1S after' in sentence:\n",
|
332 |
+
" cells = ['MM.1S']\n",
|
333 |
+
" if 'Primary Cardiomyocytes' in sentence:\n",
|
334 |
+
" cells = ['Primary Cardiomyocytes']\n",
|
335 |
+
" if ' HDAC6 in MM1S after' in sentence:\n",
|
336 |
+
" cells = ['MM.1S']\n",
|
337 |
+
"\n",
|
338 |
+
" # Extracting treatment hours\n",
|
339 |
+
" treatment_hours_match = re.search(treatment_regex, sentence)\n",
|
340 |
+
" if treatment_hours_match:\n",
|
341 |
+
" treatment_hours = treatment_hours_match.group(1).strip('h')\n",
|
342 |
+
" treatment_hours = split_clean_str(treatment_hours, return_floats=True)\n",
|
343 |
+
" else:\n",
|
344 |
+
" treatment_hours = np.nan\n",
|
345 |
+
"\n",
|
346 |
+
" return {\n",
|
347 |
+
" 'Target (Parsed)': proteins,\n",
|
348 |
+
" 'Cell Type': cells,\n",
|
349 |
+
" 'Treatment Time (h)': treatment_hours,\n",
|
350 |
+
" }\n",
|
351 |
+
"\n",
|
352 |
+
"\n",
|
353 |
+
"corner_cases = [\n",
|
354 |
+
" # 'Degradation of BRD4',\n",
|
355 |
+
" # 'Degradation of BRD4 short/long in HeLa cells after 24 h treatment',\n",
|
356 |
+
" # 'Degradation of BRD4 BD1 assessed by EGFP/mCherry reporter assay',\n",
|
357 |
+
" # 'Degradation of BRD4 BD1/2 assessed by EGFP/mCherry reporter assay',\n",
|
358 |
+
" # 'Degradation of WT/Exon 20 Ins EGFR in OVCAR8/HeLa cells after 24 h treatment',\n",
|
359 |
+
" # 'Degradation of TPM3-TRKA/TRKA in KM12/HEL cells after 6 h treatment',\n",
|
360 |
+
" # 'Degradation of Exon 19 del/L858R EGFR in HCC827/H3255 cells after 24 h treatment',\n",
|
361 |
+
" # 'Degradation of NPM-ALK/EML4-ALK in SU-DHL-1/NCI-H2228 cells after 16 h treatment',\n",
|
362 |
+
" # 'Degradation of BCR-ABL T315I in Ba/F3 cells after 24 h treatment',\n",
|
363 |
+
" # 'Degradation of BCR-ABL T315I in MOL/(Ba/F3)/R4;11 cells after 24 h treatment',\n",
|
364 |
+
" # 'Degradation of ALK in H3122/Karpas 299/Kelly cells 16 h treatment',\n",
|
365 |
+
" 'Degradation of AR in LNCaP/VCaP AR+ cells after 6 h treatment',\n",
|
366 |
+
" 'Degradation of BRD4 BD1/2 assessed by EGFP/mCherry reporter assay',\n",
|
367 |
+
" 'Degradation of BRD4 BD1 assessed by EGFP/mCherry reporter assay',\n",
|
368 |
+
" 'Degradation of PARP1 in Primary Cardiomyocytes after 24 h treatment',\n",
|
369 |
+
" 'Degradation of HDAC6 in MM1S after 6 h treatment by in-cell ELISA analysis',\n",
|
370 |
+
" 'Degradation of total tau/P-tau in A152T neurons after 24 h treatment',\n",
|
371 |
+
" 'Degradation of Rpn13 in MM.1S after 16 h treatment',\n",
|
372 |
+
" 'Degradation of HDAC6 in MM1S after 6 h treatment by in-cell ELISA analysis',\n",
|
373 |
+
"]\n",
|
374 |
+
"\n",
|
375 |
+
"# for assay in assays[\"Assay (DC50/Dmax)\"][-5:] + corner_cases:\n",
|
376 |
+
"# if len(assay) < 5:\n",
|
377 |
+
"# continue\n",
|
378 |
+
"# print(assay)\n",
|
379 |
+
"# extracted_info = extract_dc50_info(assay)\n",
|
380 |
+
"# proteins, cells, treatment_hours = extracted_info[\n",
|
381 |
+
"# 'Target (Parsed)'], extracted_info['Cell Type'], extracted_info['Treatment Time (h)']\n",
|
382 |
+
"# print(proteins, \"|\", cells, \"|\", treatment_hours)\n",
|
383 |
+
"# print('-' * 80)"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"execution_count": 11,
|
389 |
+
"metadata": {},
|
390 |
+
"outputs": [],
|
391 |
+
"source": [
|
392 |
+
"def get_dc50_dmax_df(df):\n",
|
393 |
+
" param_cols = ['DC50 (nM)', 'Dmax (%)']\n",
|
394 |
+
" dc50_dmax_df = df.dropna(subset=param_cols + [\"Assay (DC50/Dmax)\"], how='all')\n",
|
395 |
+
" dc50_dmax_df = dc50_dmax_df[dc50_dmax_df[\"Assay (DC50/Dmax)\"].notnull()]\n",
|
396 |
+
" return dc50_dmax_df.drop_duplicates()"
|
397 |
+
]
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"cell_type": "markdown",
|
401 |
+
"metadata": {},
|
402 |
+
"source": [
|
403 |
+
"The 'Dmax (%)' column in PROTAC-DB-v2 has two entries which are _dates_ (you never stop surprising me, PROTAC-DB). Convert them to NaNs."
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 12,
|
409 |
+
"metadata": {},
|
410 |
+
"outputs": [],
|
411 |
+
"source": [
|
412 |
+
"# If any entry in the 'Dmax (%)' column contains the character ':', then it is a\n",
|
413 |
+
"# date and it needs to be set to NaN\n",
|
414 |
+
"def clean_dmax(df):\n",
|
415 |
+
" df['Dmax (%)'] = df['Dmax (%)'].apply(lambda x: np.nan if ':' in str(x) else x)\n",
|
416 |
+
" return df"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "code",
|
421 |
+
"execution_count": 13,
|
422 |
+
"metadata": {},
|
423 |
+
"outputs": [
|
424 |
+
{
|
425 |
+
"data": {
|
426 |
+
"application/vnd.jupyter.widget-view+json": {
|
427 |
+
"model_id": "c889fc12d4a040a78fbfdc506696ea9f",
|
428 |
+
"version_major": 2,
|
429 |
+
"version_minor": 0
|
430 |
+
},
|
431 |
+
"text/plain": [
|
432 |
+
"Extracting DC50/Dmax info: 0%| | 0/1008 [00:00<?, ?it/s]"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
"metadata": {},
|
436 |
+
"output_type": "display_data"
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"data": {
|
440 |
+
"text/html": [
|
441 |
+
"<div>\n",
|
442 |
+
"<style scoped>\n",
|
443 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
444 |
+
" vertical-align: middle;\n",
|
445 |
+
" }\n",
|
446 |
+
"\n",
|
447 |
+
" .dataframe tbody tr th {\n",
|
448 |
+
" vertical-align: top;\n",
|
449 |
+
" }\n",
|
450 |
+
"\n",
|
451 |
+
" .dataframe thead th {\n",
|
452 |
+
" text-align: right;\n",
|
453 |
+
" }\n",
|
454 |
+
"</style>\n",
|
455 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
456 |
+
" <thead>\n",
|
457 |
+
" <tr style=\"text-align: right;\">\n",
|
458 |
+
" <th></th>\n",
|
459 |
+
" <th>Compound ID</th>\n",
|
460 |
+
" <th>Uniprot</th>\n",
|
461 |
+
" <th>Target</th>\n",
|
462 |
+
" <th>E3 Ligase</th>\n",
|
463 |
+
" <th>PDB</th>\n",
|
464 |
+
" <th>Name</th>\n",
|
465 |
+
" <th>Smiles</th>\n",
|
466 |
+
" <th>DC50 (nM)</th>\n",
|
467 |
+
" <th>Dmax (%)</th>\n",
|
468 |
+
" <th>Assay (DC50/Dmax)</th>\n",
|
469 |
+
" <th>...</th>\n",
|
470 |
+
" <th>Hydrogen Bond Acceptor Count</th>\n",
|
471 |
+
" <th>Hydrogen Bond Donor Count</th>\n",
|
472 |
+
" <th>Rotatable Bond Count</th>\n",
|
473 |
+
" <th>Topological Polar Surface Area</th>\n",
|
474 |
+
" <th>Molecular Formula</th>\n",
|
475 |
+
" <th>InChI</th>\n",
|
476 |
+
" <th>InChI Key</th>\n",
|
477 |
+
" <th>Target (Parsed)</th>\n",
|
478 |
+
" <th>Cell Type</th>\n",
|
479 |
+
" <th>Treatment Time (h)</th>\n",
|
480 |
+
" </tr>\n",
|
481 |
+
" </thead>\n",
|
482 |
+
" <tbody>\n",
|
483 |
+
" <tr>\n",
|
484 |
+
" <th>0</th>\n",
|
485 |
+
" <td>11</td>\n",
|
486 |
+
" <td>Q9H8M2</td>\n",
|
487 |
+
" <td>BRD9</td>\n",
|
488 |
+
" <td>VHL</td>\n",
|
489 |
+
" <td>NaN</td>\n",
|
490 |
+
" <td>NaN</td>\n",
|
491 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
492 |
+
" <td>560.00</td>\n",
|
493 |
+
" <td>80.0</td>\n",
|
494 |
+
" <td>Degradation of BRD9 in HeLa cells after 4 h tr...</td>\n",
|
495 |
+
" <td>...</td>\n",
|
496 |
+
" <td>16</td>\n",
|
497 |
+
" <td>3</td>\n",
|
498 |
+
" <td>22</td>\n",
|
499 |
+
" <td>199.15</td>\n",
|
500 |
+
" <td>C54H69FN8O10S</td>\n",
|
501 |
+
" <td>InChI=1S/C54H69FN8O10S/c1-34-47(74-33-58-34)35...</td>\n",
|
502 |
+
" <td>MXAKQOVZPDLCDK-UDVNCTHFSA-N</td>\n",
|
503 |
+
" <td>BRD9</td>\n",
|
504 |
+
" <td>HeLa</td>\n",
|
505 |
+
" <td>4.0</td>\n",
|
506 |
+
" </tr>\n",
|
507 |
+
" <tr>\n",
|
508 |
+
" <th>1</th>\n",
|
509 |
+
" <td>22</td>\n",
|
510 |
+
" <td>Q9H8M2</td>\n",
|
511 |
+
" <td>BRD9</td>\n",
|
512 |
+
" <td>VHL</td>\n",
|
513 |
+
" <td>NaN</td>\n",
|
514 |
+
" <td>VZ185</td>\n",
|
515 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
516 |
+
" <td>1.76</td>\n",
|
517 |
+
" <td>95.0</td>\n",
|
518 |
+
" <td>Degradation of BRD9 in RI-1 cells after 8 h tr...</td>\n",
|
519 |
+
" <td>...</td>\n",
|
520 |
+
" <td>14</td>\n",
|
521 |
+
" <td>3</td>\n",
|
522 |
+
" <td>19</td>\n",
|
523 |
+
" <td>180.69</td>\n",
|
524 |
+
" <td>C53H67FN8O8S</td>\n",
|
525 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
526 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
527 |
+
" <td>BRD9</td>\n",
|
528 |
+
" <td>RI-1</td>\n",
|
529 |
+
" <td>8.0</td>\n",
|
530 |
+
" </tr>\n",
|
531 |
+
" <tr>\n",
|
532 |
+
" <th>2</th>\n",
|
533 |
+
" <td>22</td>\n",
|
534 |
+
" <td>Q9H8M2</td>\n",
|
535 |
+
" <td>BRD9</td>\n",
|
536 |
+
" <td>VHL</td>\n",
|
537 |
+
" <td>NaN</td>\n",
|
538 |
+
" <td>VZ185</td>\n",
|
539 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
540 |
+
" <td>4.00</td>\n",
|
541 |
+
" <td>NaN</td>\n",
|
542 |
+
" <td>Degradation of HiBiT-BRD9 in HEK293 cells afte...</td>\n",
|
543 |
+
" <td>...</td>\n",
|
544 |
+
" <td>14</td>\n",
|
545 |
+
" <td>3</td>\n",
|
546 |
+
" <td>19</td>\n",
|
547 |
+
" <td>180.69</td>\n",
|
548 |
+
" <td>C53H67FN8O8S</td>\n",
|
549 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
550 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
551 |
+
" <td>HiBiT-BRD9</td>\n",
|
552 |
+
" <td>HEK293</td>\n",
|
553 |
+
" <td>24.0</td>\n",
|
554 |
+
" </tr>\n",
|
555 |
+
" <tr>\n",
|
556 |
+
" <th>3</th>\n",
|
557 |
+
" <td>22</td>\n",
|
558 |
+
" <td>Q9H8M2</td>\n",
|
559 |
+
" <td>BRD9</td>\n",
|
560 |
+
" <td>VHL</td>\n",
|
561 |
+
" <td>NaN</td>\n",
|
562 |
+
" <td>VZ185</td>\n",
|
563 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
564 |
+
" <td>2.00</td>\n",
|
565 |
+
" <td>NaN</td>\n",
|
566 |
+
" <td>Degradation of BRD9 in EOL-1/A-204 cells after...</td>\n",
|
567 |
+
" <td>...</td>\n",
|
568 |
+
" <td>14</td>\n",
|
569 |
+
" <td>3</td>\n",
|
570 |
+
" <td>19</td>\n",
|
571 |
+
" <td>180.69</td>\n",
|
572 |
+
" <td>C53H67FN8O8S</td>\n",
|
573 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
574 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
575 |
+
" <td>BRD9</td>\n",
|
576 |
+
" <td>EOL-1</td>\n",
|
577 |
+
" <td>18.0</td>\n",
|
578 |
+
" </tr>\n",
|
579 |
+
" <tr>\n",
|
580 |
+
" <th>4</th>\n",
|
581 |
+
" <td>22</td>\n",
|
582 |
+
" <td>Q9H8M2</td>\n",
|
583 |
+
" <td>BRD9</td>\n",
|
584 |
+
" <td>VHL</td>\n",
|
585 |
+
" <td>NaN</td>\n",
|
586 |
+
" <td>VZ185</td>\n",
|
587 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
588 |
+
" <td>8.00</td>\n",
|
589 |
+
" <td>NaN</td>\n",
|
590 |
+
" <td>Degradation of BRD9 in EOL-1/A-204 cells after...</td>\n",
|
591 |
+
" <td>...</td>\n",
|
592 |
+
" <td>14</td>\n",
|
593 |
+
" <td>3</td>\n",
|
594 |
+
" <td>19</td>\n",
|
595 |
+
" <td>180.69</td>\n",
|
596 |
+
" <td>C53H67FN8O8S</td>\n",
|
597 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
598 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
599 |
+
" <td>BRD9</td>\n",
|
600 |
+
" <td>A-204</td>\n",
|
601 |
+
" <td>18.0</td>\n",
|
602 |
+
" </tr>\n",
|
603 |
+
" </tbody>\n",
|
604 |
+
"</table>\n",
|
605 |
+
"<p>5 rows × 92 columns</p>\n",
|
606 |
+
"</div>"
|
607 |
+
],
|
608 |
+
"text/plain": [
|
609 |
+
" Compound ID Uniprot Target E3 Ligase PDB Name \\\n",
|
610 |
+
"0 11 Q9H8M2 BRD9 VHL NaN NaN \n",
|
611 |
+
"1 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
612 |
+
"2 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
613 |
+
"3 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
614 |
+
"4 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
615 |
+
"\n",
|
616 |
+
" Smiles DC50 (nM) Dmax (%) \\\n",
|
617 |
+
"0 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 560.00 80.0 \n",
|
618 |
+
"1 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 1.76 95.0 \n",
|
619 |
+
"2 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 4.00 NaN \n",
|
620 |
+
"3 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 2.00 NaN \n",
|
621 |
+
"4 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 8.00 NaN \n",
|
622 |
+
"\n",
|
623 |
+
" Assay (DC50/Dmax) ... \\\n",
|
624 |
+
"0 Degradation of BRD9 in HeLa cells after 4 h tr... ... \n",
|
625 |
+
"1 Degradation of BRD9 in RI-1 cells after 8 h tr... ... \n",
|
626 |
+
"2 Degradation of HiBiT-BRD9 in HEK293 cells afte... ... \n",
|
627 |
+
"3 Degradation of BRD9 in EOL-1/A-204 cells after... ... \n",
|
628 |
+
"4 Degradation of BRD9 in EOL-1/A-204 cells after... ... \n",
|
629 |
+
"\n",
|
630 |
+
" Hydrogen Bond Acceptor Count Hydrogen Bond Donor Count Rotatable Bond Count \\\n",
|
631 |
+
"0 16 3 22 \n",
|
632 |
+
"1 14 3 19 \n",
|
633 |
+
"2 14 3 19 \n",
|
634 |
+
"3 14 3 19 \n",
|
635 |
+
"4 14 3 19 \n",
|
636 |
+
"\n",
|
637 |
+
" Topological Polar Surface Area Molecular Formula \\\n",
|
638 |
+
"0 199.15 C54H69FN8O10S \n",
|
639 |
+
"1 180.69 C53H67FN8O8S \n",
|
640 |
+
"2 180.69 C53H67FN8O8S \n",
|
641 |
+
"3 180.69 C53H67FN8O8S \n",
|
642 |
+
"4 180.69 C53H67FN8O8S \n",
|
643 |
+
"\n",
|
644 |
+
" InChI \\\n",
|
645 |
+
"0 InChI=1S/C54H69FN8O10S/c1-34-47(74-33-58-34)35... \n",
|
646 |
+
"1 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
647 |
+
"2 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
648 |
+
"3 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
649 |
+
"4 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
650 |
+
"\n",
|
651 |
+
" InChI Key Target (Parsed) Cell Type Treatment Time (h) \n",
|
652 |
+
"0 MXAKQOVZPDLCDK-UDVNCTHFSA-N BRD9 HeLa 4.0 \n",
|
653 |
+
"1 ZAGCLFXBHOXXEN-JPTLTNPLSA-N BRD9 RI-1 8.0 \n",
|
654 |
+
"2 ZAGCLFXBHOXXEN-JPTLTNPLSA-N HiBiT-BRD9 HEK293 24.0 \n",
|
655 |
+
"3 ZAGCLFXBHOXXEN-JPTLTNPLSA-N BRD9 EOL-1 18.0 \n",
|
656 |
+
"4 ZAGCLFXBHOXXEN-JPTLTNPLSA-N BRD9 A-204 18.0 \n",
|
657 |
+
"\n",
|
658 |
+
"[5 rows x 92 columns]"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
"metadata": {},
|
662 |
+
"output_type": "display_data"
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"name": "stdout",
|
666 |
+
"output_type": "stream",
|
667 |
+
"text": [
|
668 |
+
"Parsed table len: 1205\n"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"data": {
|
673 |
+
"application/vnd.jupyter.widget-view+json": {
|
674 |
+
"model_id": "a788394f66594587b03025bd8f3d9c51",
|
675 |
+
"version_major": 2,
|
676 |
+
"version_minor": 0
|
677 |
+
},
|
678 |
+
"text/plain": [
|
679 |
+
"Extracting DC50/Dmax info: 0%| | 0/1892 [00:00<?, ?it/s]"
|
680 |
+
]
|
681 |
+
},
|
682 |
+
"metadata": {},
|
683 |
+
"output_type": "display_data"
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"data": {
|
687 |
+
"text/html": [
|
688 |
+
"<div>\n",
|
689 |
+
"<style scoped>\n",
|
690 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
691 |
+
" vertical-align: middle;\n",
|
692 |
+
" }\n",
|
693 |
+
"\n",
|
694 |
+
" .dataframe tbody tr th {\n",
|
695 |
+
" vertical-align: top;\n",
|
696 |
+
" }\n",
|
697 |
+
"\n",
|
698 |
+
" .dataframe thead th {\n",
|
699 |
+
" text-align: right;\n",
|
700 |
+
" }\n",
|
701 |
+
"</style>\n",
|
702 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
703 |
+
" <thead>\n",
|
704 |
+
" <tr style=\"text-align: right;\">\n",
|
705 |
+
" <th></th>\n",
|
706 |
+
" <th>Compound ID</th>\n",
|
707 |
+
" <th>Uniprot</th>\n",
|
708 |
+
" <th>Target</th>\n",
|
709 |
+
" <th>E3 Ligase</th>\n",
|
710 |
+
" <th>PDB</th>\n",
|
711 |
+
" <th>Name</th>\n",
|
712 |
+
" <th>Smiles</th>\n",
|
713 |
+
" <th>DC50 (nM)</th>\n",
|
714 |
+
" <th>Dmax (%)</th>\n",
|
715 |
+
" <th>Assay (DC50/Dmax)</th>\n",
|
716 |
+
" <th>...</th>\n",
|
717 |
+
" <th>Hydrogen Bond Acceptor Count</th>\n",
|
718 |
+
" <th>Hydrogen Bond Donor Count</th>\n",
|
719 |
+
" <th>Rotatable Bond Count</th>\n",
|
720 |
+
" <th>Topological Polar Surface Area</th>\n",
|
721 |
+
" <th>Molecular Formula</th>\n",
|
722 |
+
" <th>InChI</th>\n",
|
723 |
+
" <th>InChI Key</th>\n",
|
724 |
+
" <th>Target (Parsed)</th>\n",
|
725 |
+
" <th>Cell Type</th>\n",
|
726 |
+
" <th>Treatment Time (h)</th>\n",
|
727 |
+
" </tr>\n",
|
728 |
+
" </thead>\n",
|
729 |
+
" <tbody>\n",
|
730 |
+
" <tr>\n",
|
731 |
+
" <th>0</th>\n",
|
732 |
+
" <td>11</td>\n",
|
733 |
+
" <td>Q9H8M2</td>\n",
|
734 |
+
" <td>BRD9</td>\n",
|
735 |
+
" <td>VHL</td>\n",
|
736 |
+
" <td>NaN</td>\n",
|
737 |
+
" <td>NaN</td>\n",
|
738 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
739 |
+
" <td>560.00</td>\n",
|
740 |
+
" <td>80.0</td>\n",
|
741 |
+
" <td>Degradation of BRD9 in HeLa cells after 4 h tr...</td>\n",
|
742 |
+
" <td>...</td>\n",
|
743 |
+
" <td>16</td>\n",
|
744 |
+
" <td>3</td>\n",
|
745 |
+
" <td>22</td>\n",
|
746 |
+
" <td>199.15</td>\n",
|
747 |
+
" <td>C54H69FN8O10S</td>\n",
|
748 |
+
" <td>InChI=1S/C54H69FN8O10S/c1-34-47(74-33-58-34)35...</td>\n",
|
749 |
+
" <td>MXAKQOVZPDLCDK-UDVNCTHFSA-N</td>\n",
|
750 |
+
" <td>BRD9</td>\n",
|
751 |
+
" <td>HeLa</td>\n",
|
752 |
+
" <td>4.0</td>\n",
|
753 |
+
" </tr>\n",
|
754 |
+
" <tr>\n",
|
755 |
+
" <th>1</th>\n",
|
756 |
+
" <td>22</td>\n",
|
757 |
+
" <td>Q9H8M2</td>\n",
|
758 |
+
" <td>BRD9</td>\n",
|
759 |
+
" <td>VHL</td>\n",
|
760 |
+
" <td>NaN</td>\n",
|
761 |
+
" <td>VZ185</td>\n",
|
762 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
763 |
+
" <td>1.76</td>\n",
|
764 |
+
" <td>95.0</td>\n",
|
765 |
+
" <td>Degradation of BRD9 in RI-1 cells after 8 h tr...</td>\n",
|
766 |
+
" <td>...</td>\n",
|
767 |
+
" <td>14</td>\n",
|
768 |
+
" <td>3</td>\n",
|
769 |
+
" <td>19</td>\n",
|
770 |
+
" <td>180.69</td>\n",
|
771 |
+
" <td>C53H67FN8O8S</td>\n",
|
772 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
773 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
774 |
+
" <td>BRD9</td>\n",
|
775 |
+
" <td>RI-1</td>\n",
|
776 |
+
" <td>8.0</td>\n",
|
777 |
+
" </tr>\n",
|
778 |
+
" <tr>\n",
|
779 |
+
" <th>2</th>\n",
|
780 |
+
" <td>22</td>\n",
|
781 |
+
" <td>Q9H8M2</td>\n",
|
782 |
+
" <td>BRD9</td>\n",
|
783 |
+
" <td>VHL</td>\n",
|
784 |
+
" <td>NaN</td>\n",
|
785 |
+
" <td>VZ185</td>\n",
|
786 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
787 |
+
" <td>4.00</td>\n",
|
788 |
+
" <td>NaN</td>\n",
|
789 |
+
" <td>Degradation of HiBiT-BRD9 in HEK293 cells afte...</td>\n",
|
790 |
+
" <td>...</td>\n",
|
791 |
+
" <td>14</td>\n",
|
792 |
+
" <td>3</td>\n",
|
793 |
+
" <td>19</td>\n",
|
794 |
+
" <td>180.69</td>\n",
|
795 |
+
" <td>C53H67FN8O8S</td>\n",
|
796 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
797 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
798 |
+
" <td>HiBiT-BRD9</td>\n",
|
799 |
+
" <td>HEK293</td>\n",
|
800 |
+
" <td>24.0</td>\n",
|
801 |
+
" </tr>\n",
|
802 |
+
" <tr>\n",
|
803 |
+
" <th>3</th>\n",
|
804 |
+
" <td>22</td>\n",
|
805 |
+
" <td>Q9H8M2</td>\n",
|
806 |
+
" <td>BRD9</td>\n",
|
807 |
+
" <td>VHL</td>\n",
|
808 |
+
" <td>NaN</td>\n",
|
809 |
+
" <td>VZ185</td>\n",
|
810 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
811 |
+
" <td>2.00</td>\n",
|
812 |
+
" <td>NaN</td>\n",
|
813 |
+
" <td>Degradation of BRD9 in EOL-1/A-204 cells after...</td>\n",
|
814 |
+
" <td>...</td>\n",
|
815 |
+
" <td>14</td>\n",
|
816 |
+
" <td>3</td>\n",
|
817 |
+
" <td>19</td>\n",
|
818 |
+
" <td>180.69</td>\n",
|
819 |
+
" <td>C53H67FN8O8S</td>\n",
|
820 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
821 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
822 |
+
" <td>BRD9</td>\n",
|
823 |
+
" <td>EOL-1</td>\n",
|
824 |
+
" <td>18.0</td>\n",
|
825 |
+
" </tr>\n",
|
826 |
+
" <tr>\n",
|
827 |
+
" <th>4</th>\n",
|
828 |
+
" <td>22</td>\n",
|
829 |
+
" <td>Q9H8M2</td>\n",
|
830 |
+
" <td>BRD9</td>\n",
|
831 |
+
" <td>VHL</td>\n",
|
832 |
+
" <td>NaN</td>\n",
|
833 |
+
" <td>VZ185</td>\n",
|
834 |
+
" <td>COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN...</td>\n",
|
835 |
+
" <td>8.00</td>\n",
|
836 |
+
" <td>NaN</td>\n",
|
837 |
+
" <td>Degradation of BRD9 in EOL-1/A-204 cells after...</td>\n",
|
838 |
+
" <td>...</td>\n",
|
839 |
+
" <td>14</td>\n",
|
840 |
+
" <td>3</td>\n",
|
841 |
+
" <td>19</td>\n",
|
842 |
+
" <td>180.69</td>\n",
|
843 |
+
" <td>C53H67FN8O8S</td>\n",
|
844 |
+
" <td>InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-...</td>\n",
|
845 |
+
" <td>ZAGCLFXBHOXXEN-JPTLTNPLSA-N</td>\n",
|
846 |
+
" <td>BRD9</td>\n",
|
847 |
+
" <td>A-204</td>\n",
|
848 |
+
" <td>18.0</td>\n",
|
849 |
+
" </tr>\n",
|
850 |
+
" </tbody>\n",
|
851 |
+
"</table>\n",
|
852 |
+
"<p>5 rows × 92 columns</p>\n",
|
853 |
+
"</div>"
|
854 |
+
],
|
855 |
+
"text/plain": [
|
856 |
+
" Compound ID Uniprot Target E3 Ligase PDB Name \\\n",
|
857 |
+
"0 11 Q9H8M2 BRD9 VHL NaN NaN \n",
|
858 |
+
"1 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
859 |
+
"2 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
860 |
+
"3 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
861 |
+
"4 22 Q9H8M2 BRD9 VHL NaN VZ185 \n",
|
862 |
+
"\n",
|
863 |
+
" Smiles DC50 (nM) Dmax (%) \\\n",
|
864 |
+
"0 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 560.00 80.0 \n",
|
865 |
+
"1 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 1.76 95.0 \n",
|
866 |
+
"2 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 4.00 NaN \n",
|
867 |
+
"3 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 2.00 NaN \n",
|
868 |
+
"4 COC1=CC(C2=CN(C)C(=O)C3=CN=CC=C23)=CC(OC)=C1CN... 8.00 NaN \n",
|
869 |
+
"\n",
|
870 |
+
" Assay (DC50/Dmax) ... \\\n",
|
871 |
+
"0 Degradation of BRD9 in HeLa cells after 4 h tr... ... \n",
|
872 |
+
"1 Degradation of BRD9 in RI-1 cells after 8 h tr... ... \n",
|
873 |
+
"2 Degradation of HiBiT-BRD9 in HEK293 cells afte... ... \n",
|
874 |
+
"3 Degradation of BRD9 in EOL-1/A-204 cells after... ... \n",
|
875 |
+
"4 Degradation of BRD9 in EOL-1/A-204 cells after... ... \n",
|
876 |
+
"\n",
|
877 |
+
" Hydrogen Bond Acceptor Count Hydrogen Bond Donor Count Rotatable Bond Count \\\n",
|
878 |
+
"0 16 3 22 \n",
|
879 |
+
"1 14 3 19 \n",
|
880 |
+
"2 14 3 19 \n",
|
881 |
+
"3 14 3 19 \n",
|
882 |
+
"4 14 3 19 \n",
|
883 |
+
"\n",
|
884 |
+
" Topological Polar Surface Area Molecular Formula \\\n",
|
885 |
+
"0 199.15 C54H69FN8O10S \n",
|
886 |
+
"1 180.69 C53H67FN8O8S \n",
|
887 |
+
"2 180.69 C53H67FN8O8S \n",
|
888 |
+
"3 180.69 C53H67FN8O8S \n",
|
889 |
+
"4 180.69 C53H67FN8O8S \n",
|
890 |
+
"\n",
|
891 |
+
" InChI \\\n",
|
892 |
+
"0 InChI=1S/C54H69FN8O10S/c1-34-47(74-33-58-34)35... \n",
|
893 |
+
"1 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
894 |
+
"2 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
895 |
+
"3 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
896 |
+
"4 InChI=1S/C53H67FN8O8S/c1-33-46(71-32-57-33)34-... \n",
|
897 |
+
"\n",
|
898 |
+
" InChI Key Target (Parsed) Cell Type Treatment Time (h) \n",
|
899 |
+
"0 MXAKQOVZPDLCDK-UDVNCTHFSA-N BRD9 HeLa 4.0 \n",
|
900 |
+
"1 ZAGCLFXBHOXXEN-JPTLTNPLSA-N BRD9 RI-1 8.0 \n",
|
901 |
+
"2 ZAGCLFXBHOXXEN-JPTLTNPLSA-N HiBiT-BRD9 HEK293 24.0 \n",
|
902 |
+
"3 ZAGCLFXBHOXXEN-JPTLTNPLSA-N BRD9 EOL-1 18.0 \n",
|
903 |
+
"4 ZAGCLFXBHOXXEN-JPTLTNPLSA-N BRD9 A-204 18.0 \n",
|
904 |
+
"\n",
|
905 |
+
"[5 rows x 92 columns]"
|
906 |
+
]
|
907 |
+
},
|
908 |
+
"metadata": {},
|
909 |
+
"output_type": "display_data"
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"name": "stdout",
|
913 |
+
"output_type": "stream",
|
914 |
+
"text": [
|
915 |
+
"Parsed table len: 2264\n"
|
916 |
+
]
|
917 |
+
}
|
918 |
+
],
|
919 |
+
"source": [
|
920 |
+
"dfs = {}\n",
|
921 |
+
"\n",
|
922 |
+
"for name, df in [('protac-db', protac_df), ('protac-db-v2', protac_v2_df)]:\n",
|
923 |
+
" dc50_dmax_df = get_dc50_dmax_df(clean_dmax(df))\n",
|
924 |
+
"\n",
|
925 |
+
" parsed_table = []\n",
|
926 |
+
" for i, row in tqdm(dc50_dmax_df.iterrows(), total=len(dc50_dmax_df), desc='Extracting DC50/Dmax info'):\n",
|
927 |
+
" assay = row[\"Assay (DC50/Dmax)\"]\n",
|
928 |
+
" if len(assay) < 5:\n",
|
929 |
+
" continue\n",
|
930 |
+
" extracted_info = extract_dc50_info(assay)\n",
|
931 |
+
" extracted_info['DC50 (nM)'] = split_clean_str(\n",
|
932 |
+
" row['DC50 (nM)'], return_floats=True)\n",
|
933 |
+
" extracted_info['Dmax (%)'] = split_clean_str(\n",
|
934 |
+
" row['Dmax (%)'], return_floats=True)\n",
|
935 |
+
"\n",
|
936 |
+
" # Get the max len of each list in the extracted info\n",
|
937 |
+
" max_len = max([len(v)\n",
|
938 |
+
" for v in extracted_info.values() if isinstance(v, list)])\n",
|
939 |
+
" for i in range(max_len):\n",
|
940 |
+
" row_tmp = row.copy().to_dict()\n",
|
941 |
+
" row_tmp.update({k: v[i % len(v)] if isinstance(v, list)\n",
|
942 |
+
" else v for k, v in extracted_info.items()})\n",
|
943 |
+
" parsed_table.append(row_tmp)\n",
|
944 |
+
"\n",
|
945 |
+
" parsed_table = pd.DataFrame(parsed_table)\n",
|
946 |
+
" display(parsed_table.head())\n",
|
947 |
+
" print(f'Parsed table len: {len(parsed_table)}')\n",
|
948 |
+
" dfs[name] = parsed_table"
|
949 |
+
]
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"cell_type": "code",
|
953 |
+
"execution_count": 14,
|
954 |
+
"metadata": {},
|
955 |
+
"outputs": [],
|
956 |
+
"source": [
|
957 |
+
"def canonize_smiles(smi):\n",
|
958 |
+
" return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
|
959 |
+
"\n",
|
960 |
+
"dfs['protac-db']['Smiles'] = dfs['protac-db']['Smiles'].apply(canonize_smiles)\n",
|
961 |
+
"dfs['protac-db-v2']['Smiles'] = dfs['protac-db-v2']['Smiles'].apply(canonize_smiles)"
|
962 |
+
]
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"cell_type": "code",
|
966 |
+
"execution_count": 27,
|
967 |
+
"metadata": {},
|
968 |
+
"outputs": [
|
969 |
+
{
|
970 |
+
"name": "stdout",
|
971 |
+
"output_type": "stream",
|
972 |
+
"text": [
|
973 |
+
"Number of entries in protac-db: 1205\n",
|
974 |
+
"Number of entries in protac-db-v2: 2264\n",
|
975 |
+
"Number of shared entries: 1249\n",
|
976 |
+
"Number of total entries: 2232\n"
|
977 |
+
]
|
978 |
+
}
|
979 |
+
],
|
980 |
+
"source": [
|
981 |
+
"# Get the number of entries in both dfs\n",
|
982 |
+
"print(f'Number of entries in protac-db: {len(dfs[\"protac-db\"])}')\n",
|
983 |
+
"print(f'Number of entries in protac-db-v2: {len(dfs[\"protac-db-v2\"])}')\n",
|
984 |
+
"# Get the number of entries shared between the two dfs\n",
|
985 |
+
"predict_cols = [\"Smiles\", \"DC50 (nM)\", \"Dmax (%)\", \"E3 Ligase\", \"Uniprot\", \"Cell Type\"]\n",
|
986 |
+
"print(f'Number of shared entries: {len(dfs[\"protac-db\"].merge(dfs[\"protac-db-v2\"], on=predict_cols, how=\"inner\"))}')\n",
|
987 |
+
"# Get the number of total entries without duplicates\n",
|
988 |
+
"print(f'Number of total entries: {len(dfs[\"protac-db\"].append(dfs[\"protac-db-v2\"]).drop_duplicates(subset=predict_cols))}')"
|
989 |
+
]
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"cell_type": "code",
|
993 |
+
"execution_count": null,
|
994 |
+
"metadata": {},
|
995 |
+
"outputs": [],
|
996 |
+
"source": []
|
997 |
+
}
|
998 |
+
],
|
999 |
+
"metadata": {
|
1000 |
+
"kernelspec": {
|
1001 |
+
"display_name": "Python 3 (ipykernel)",
|
1002 |
+
"language": "python",
|
1003 |
+
"name": "python3"
|
1004 |
+
},
|
1005 |
+
"language_info": {
|
1006 |
+
"codemirror_mode": {
|
1007 |
+
"name": "ipython",
|
1008 |
+
"version": 3
|
1009 |
+
},
|
1010 |
+
"file_extension": ".py",
|
1011 |
+
"mimetype": "text/x-python",
|
1012 |
+
"name": "python",
|
1013 |
+
"nbconvert_exporter": "python",
|
1014 |
+
"pygments_lexer": "ipython3",
|
1015 |
+
"version": "3.10.8"
|
1016 |
+
}
|
1017 |
+
},
|
1018 |
+
"nbformat": 4,
|
1019 |
+
"nbformat_minor": 2
|
1020 |
+
}
|