File size: 29,387 Bytes
5e01175 4e1d3f6 8aec0bb 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 8aec0bb 5e01175 4e1d3f6 8aec0bb 5e01175 33f1644 8aec0bb 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 4d17fea 5e01175 4d17fea 5e01175 8aec0bb e1370eb 8aec0bb 5e01175 33f1644 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 4e1d3f6 5e01175 14c7b13 5e01175 d8a186f 5e01175 4e1d3f6 4bf0ec2 4e1d3f6 4bf0ec2 4e1d3f6 4bf0ec2 4e1d3f6 4bf0ec2 4e1d3f6 8aec0bb 5e01175 4e1d3f6 5e01175 4e1d3f6 33f1644 8aec0bb 4e1d3f6 33f1644 251060c 4e1d3f6 251060c 4e1d3f6 8aec0bb 4e1d3f6 33f1644 4e1d3f6 33f1644 4e1d3f6 33f1644 4e1d3f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
from typing import Literal, List, Tuple, Optional, Dict
from collections import defaultdict
import random
import logging
from .data_utils import (
get_fingerprint,
is_active,
load_cell2embedding,
load_protein2embedding,
)
from torch.utils.data import Dataset, DataLoader
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
class PROTAC_Dataset(Dataset):
def __init__(
self,
protac_df: pd.DataFrame,
protein2embedding: Dict[str, np.ndarray],
cell2embedding: Dict[str, np.ndarray],
smiles2fp: Dict[str, np.ndarray],
use_smote: bool = False,
oversampler: Optional[SMOTE | ADASYN] = None,
active_label: str = 'Active',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
scaler: Optional[StandardScaler | Dict[str, StandardScaler]] = None,
use_single_scaler: Optional[bool] = None,
shuffle_embedding_prob: float = 0.0,
):
""" Initialize the PROTAC dataset
Args:
protac_df (pd.DataFrame): The PROTAC dataframe
protein2embedding (dict): Dictionary of protein embeddings
cell2embedding (dict): Dictionary of cell line embeddings
smiles2fp (dict): Dictionary of SMILES to fingerprint
use_smote (bool): Whether to use SMOTE for oversampling
oversampler (SMOTE | ADASYN): The oversampler to use
active_label (str): The column containing the active/inactive information
disabled_embeddings (list): The list of embeddings to disable, i.e., return a zero vector
scaler (StandardScaler | dict): The scaler to use for the embeddings
use_single_scaler (bool): Whether to use a single scaler for all features
shuffle_embedding_prob (float): The probability of shuffling the embeddings. Used for testing whether embeddings act as "barcodes". Defaults to 0.0, i.e., no shuffling.
"""
# Filter out examples with NaN in active_label column
self.data = protac_df # [~protac_df[active_label].isna()]
self.protein2embedding = protein2embedding
self.cell2embedding = cell2embedding
self.smiles2fp = smiles2fp
self.active_label = active_label
self.disabled_embeddings = disabled_embeddings
# Scaling parameters
self.scaler = scaler
self.use_single_scaler = use_single_scaler
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
self.protein_emb_dim = protein2embedding[list(
protein2embedding.keys())[0]].shape[0]
self.cell_emb_dim = cell2embedding[list(
cell2embedding.keys())[0]].shape[0]
self.default_smiles_emb = np.zeros(self.smiles_emb_dim)
self.default_protein_emb = np.zeros(self.protein_emb_dim)
self.default_cell_emb = np.zeros(self.cell_emb_dim)
# Look up the embeddings
self.data = pd.DataFrame({
'Smiles': self.data['Smiles'].apply(lambda x: smiles2fp.get(x, self.default_smiles_emb).astype(np.float32)).tolist(),
'Uniprot': self.data['Uniprot'].apply(lambda x: protein2embedding.get(x, self.default_protein_emb).astype(np.float32)).tolist(),
'E3 Ligase Uniprot': self.data['E3 Ligase Uniprot'].apply(lambda x: protein2embedding.get(x, self.default_protein_emb).astype(np.float32)).tolist(),
'Cell Line Identifier': self.data['Cell Line Identifier'].apply(lambda x: cell2embedding.get(x, self.default_cell_emb).astype(np.float32)).tolist(),
self.active_label: self.data[self.active_label].astype(np.float32).tolist(),
})
# Apply SMOTE
self.use_smote = use_smote
self.oversampler = oversampler
if self.use_smote:
self.apply_smote()
self.shuffle_embedding_prob = shuffle_embedding_prob
if shuffle_embedding_prob > 0.0:
# Set random seed
random.seed(42)
if self.protein_emb_dim != self.cell_emb_dim:
logging.warning('Protein and cell embeddings have different dimensions. Shuffling will be on POI and E3 embeddings only.')
def get_smiles_emb_dim(self):
return self.smiles_emb_dim
def get_protein_emb_dim(self):
return self.protein_emb_dim
def get_cell_emb_dim(self):
return self.cell_emb_dim
def apply_smote(self):
# Prepare the dataset for SMOTE
features = []
labels = []
for _, row in self.data.iterrows():
features.append(np.hstack([
row['Smiles'],
row['Uniprot'],
row['E3 Ligase Uniprot'],
row['Cell Line Identifier'],
]))
labels.append(row[self.active_label])
# Convert to numpy array
features = np.array(features).astype(np.float32)
labels = np.array(labels).astype(np.float32)
# Initialize SMOTE and fit
if self.oversampler is None:
oversampler = SMOTE(random_state=42)
else:
oversampler = self.oversampler
features_smote, labels_smote = oversampler.fit_resample(features, labels)
# Separate the features back into their respective embeddings
smiles_embs = features_smote[:, :self.smiles_emb_dim]
poi_embs = features_smote[:,
self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]
e3_embs = features_smote[:, self.smiles_emb_dim +
self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]
cell_embs = features_smote[:, -self.cell_emb_dim:]
# Reconstruct the dataframe with oversampled data
df_smote = pd.DataFrame({
'Smiles': list(smiles_embs),
'Uniprot': list(poi_embs),
'E3 Ligase Uniprot': list(e3_embs),
'Cell Line Identifier': list(cell_embs),
self.active_label: labels_smote
})
self.data = df_smote
def fit_scaling(self, use_single_scaler: bool = False, **scaler_kwargs) -> dict:
""" Fit the scalers for the data and save them in the dataset class.
Args:
use_single_scaler (bool): Whether to use a single scaler for all features.
scaler_kwargs: Keyword arguments for the StandardScaler.
Returns:
dict: The fitted scalers.
"""
if use_single_scaler:
self.use_single_scaler = True
self.scaler = StandardScaler(**scaler_kwargs)
embeddings = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
])
self.scaler.fit(embeddings)
return self.scaler
else:
self.use_single_scaler = False
scalers = {}
scalers['Smiles'] = StandardScaler(**scaler_kwargs)
scalers['Uniprot'] = StandardScaler(**scaler_kwargs)
scalers['E3 Ligase Uniprot'] = StandardScaler(**scaler_kwargs)
scalers['Cell Line Identifier'] = StandardScaler(**scaler_kwargs)
scalers['Smiles'].fit(np.stack(self.data['Smiles'].to_numpy()))
scalers['Uniprot'].fit(np.stack(self.data['Uniprot'].to_numpy()))
scalers['E3 Ligase Uniprot'].fit(np.stack(self.data['E3 Ligase Uniprot'].to_numpy()))
scalers['Cell Line Identifier'].fit(np.stack(self.data['Cell Line Identifier'].to_numpy()))
self.scaler = scalers
return scalers
def apply_scaling(self, scalers: dict, use_single_scaler: bool = False):
""" Apply scaling to the data.
Args:
scalers (dict): The scalers for each feature.
use_single_scaler (bool): Whether to use a single scaler for all features.
"""
if use_single_scaler:
embeddings = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
])
scaled_embeddings = scalers.transform(embeddings)
self.data = pd.DataFrame({
'Smiles': list(scaled_embeddings[:, :self.smiles_emb_dim]),
'Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]),
'E3 Ligase Uniprot': list(scaled_embeddings[:, self.smiles_emb_dim+self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]),
'Cell Line Identifier': list(scaled_embeddings[:, -self.cell_emb_dim:]),
self.active_label: self.data[self.active_label]
})
else:
# Check if the self.data[<column>] data contains only binary values
# (0 or 1). If so, do not apply scaling.
for feature in ['Smiles', 'Uniprot', 'E3 Ligase Uniprot', 'Cell Line Identifier']:
feature_array = np.array(self.data[feature].tolist())
if np.all(np.isin(feature_array, [0, 1])):
continue
self.data[feature] = self.data[feature].apply(lambda x: scalers[feature].transform(x[np.newaxis, :])[0])
def get_numpy_arrays(self, component: Optional[str] = None) -> Tuple[np.ndarray, np.ndarray]:
""" Get the numpy arrays for the dataset.
Args:
component (str): The component to get the numpy arrays for. Defaults to None, i.e., get a single stacked array.
Returns:
tuple: The numpy arrays for the dataset. The first element is the input array, and the second element is the output array.
"""
if component is not None:
X = np.array(self.data[component].tolist()).copy()
else:
X = np.hstack([
np.array(self.data['Smiles'].tolist()),
np.array(self.data['Uniprot'].tolist()),
np.array(self.data['E3 Ligase Uniprot'].tolist()),
np.array(self.data['Cell Line Identifier'].tolist()),
]).copy()
y = self.data[self.active_label].values.copy()
return X, y
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if 'smiles' in self.disabled_embeddings:
# Get a zero vector for the fingerprint
smiles_emb = np.zeros(self.smiles_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a binary vector for the fingerprint
# smiles_emb = np.random.randint(0, 2, size=self.smiles_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# smiles_emb = smiles_emb[np.newaxis, :]
# smiles_emb = self.scaler['Smiles'].transform(smiles_emb).flatten()
else:
smiles_emb = self.data['Smiles'].iloc[idx]
if 'poi' in self.disabled_embeddings:
poi_emb = np.zeros(self.protein_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a vector for the protein
# poi_emb = np.random.rand(self.protein_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# poi_emb = poi_emb[np.newaxis, :]
# poi_emb = self.scaler['Uniprot'].transform(poi_emb).flatten()
else:
poi_emb = self.data['Uniprot'].iloc[idx]
if 'e3' in self.disabled_embeddings:
e3_emb = np.zeros(self.protein_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a vector for the E3 ligase
# e3_emb = np.random.rand(self.protein_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# # Add extra dimension for compatibility with the scaler
# e3_emb = e3_emb[np.newaxis, :]
# e3_emb = self.scaler['E3 Ligase Uniprot'].transform(e3_emb)
# e3_emb = e3_emb.flatten()
else:
e3_emb = self.data['E3 Ligase Uniprot'].iloc[idx]
if 'cell' in self.disabled_embeddings:
cell_emb = np.zeros(self.cell_emb_dim).astype(np.float32)
# TODO: Remove random sampling in the future
# # Uniformly sample a vector for the cell line
# cell_emb = np.random.rand(self.cell_emb_dim).astype(np.float32)
# if not self.use_single_scaler and self.scaler is not None:
# cell_emb = cell_emb[np.newaxis, :]
# cell_emb = self.scaler['Cell Line Identifier'].transform(cell_emb).flatten()
else:
cell_emb = self.data['Cell Line Identifier'].iloc[idx]
# Shuffle the embeddings if the probability is met
if random.random() < self.shuffle_embedding_prob:
if self.protein_emb_dim == self.cell_emb_dim:
# Randomly shuffle the embeddings for POI, cell, and E3
embeddings = np.vstack([poi_emb, e3_emb, cell_emb])
np.random.shuffle(embeddings)
poi_emb, e3_emb, cell_emb = embeddings
else:
# Swap POI and E3 embeddings only, because of different dimensions
poi_emb, e3_emb = e3_emb, poi_emb
elem = {
'smiles_emb': smiles_emb,
'poi_emb': poi_emb,
'e3_emb': e3_emb,
'cell_emb': cell_emb,
'active': self.data[self.active_label].iloc[idx],
}
return elem
def get_datasets(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: Optional[pd.DataFrame] = None,
protein2embedding: Dict = None,
cell2embedding: Dict = None,
smiles2fp: Dict = None,
smote_k_neighbors: int = 5,
active_label: str = 'Active',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
scaler: Optional[StandardScaler | Dict[str, StandardScaler]] = None,
use_single_scaler: Optional[bool] = None,
apply_scaling: bool = False,
shuffle_embedding_prob: float = 0.0,
) -> Tuple[PROTAC_Dataset, PROTAC_Dataset, Optional[PROTAC_Dataset]]:
""" Get the datasets for training the PROTAC model.
Args:
train_df (pd.DataFrame): The training data.
val_df (pd.DataFrame): The validation data.
test_df (pd.DataFrame): The test data.
protein2embedding (dict): Dictionary of protein embeddings.
cell2embedding (dict): Dictionary of cell line embeddings.
smiles2fp (dict): Dictionary of SMILES to fingerprint.
use_smote (bool): Whether to use SMOTE for oversampling.
smote_k_neighbors (int): The number of neighbors to use for SMOTE.
active_label (str): The active label column.
disabled_embeddings (list): The list of embeddings to disable.
scaler (StandardScaler | dict): The scaler to use for the embeddings.
use_single_scaler (bool): Whether to use a single scaler for all features.
apply_scaling (bool): Whether to apply scaling to the data now. Defaults to False (the Pytorch Lightning model does that).
"""
if smote_k_neighbors:
oversampler = SMOTE(k_neighbors=smote_k_neighbors, random_state=42)
else:
oversampler = None
train_ds = PROTAC_Dataset(
train_df,
protein2embedding,
cell2embedding,
smiles2fp,
use_smote=True if smote_k_neighbors else False,
oversampler=oversampler,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
scaler=scaler,
use_single_scaler=use_single_scaler,
shuffle_embedding_prob=shuffle_embedding_prob,
)
val_ds = PROTAC_Dataset(
val_df,
protein2embedding,
cell2embedding,
smiles2fp,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
scaler=train_ds.scaler if train_ds.scaler is not None else scaler,
use_single_scaler=train_ds.use_single_scaler if train_ds.use_single_scaler is not None else use_single_scaler,
)
train_scalers = None
if apply_scaling:
train_scalers = train_ds.fit_scaling(use_single_scaler=use_single_scaler)
val_ds.apply_scaling(train_scalers, use_single_scaler=use_single_scaler)
if test_df is not None:
test_ds = PROTAC_Dataset(
test_df,
protein2embedding,
cell2embedding,
smiles2fp,
active_label=active_label,
disabled_embeddings=disabled_embeddings,
scaler=train_scalers if apply_scaling else scaler,
use_single_scaler=train_ds.use_single_scaler if train_ds.use_single_scaler is not None else use_single_scaler,
)
if apply_scaling:
test_ds.apply_scaling(train_ds.scaler, use_single_scaler=use_single_scaler)
else:
test_ds = None
return train_ds, val_ds, test_ds
class PROTAC_DataModule(pl.LightningDataModule):
""" PyTorch Lightning DataModule for the PROTAC dataset.
TODO: Work in progress. It would be nice to wrap all information into a
single class, but it is not clear how to do it yet due to cross-validation
and the need to split the data into training, validation, and test sets
accordingly.
Args:
protac_csv_filepath (str): The path to the PROTAC CSV file.
protein2embedding_filepath (str): The path to the protein to embedding dictionary.
cell2embedding_filepath (str): The path to the cell line to embedding dictionary.
pDC50_threshold (float): The threshold for the pDC50 value to consider a PROTAC active.
Dmax_threshold (float): The threshold for the Dmax value to consider a PROTAC active.
use_smote (bool): Whether to use SMOTE for oversampling.
smote_k_neighbors (int): The number of neighbors to use for SMOTE.
active_label (str): The column containing the active/inactive information.
disabled_embeddings (list): The list of embeddings to disable.
scaler (StandardScaler | dict): The scaler to use for the embeddings.
use_single_scaler (bool): Whether to use a single scaler for all features.
"""
def __init__(
self,
protac_csv_filepath: str,
protein2embedding_filepath: str,
cell2embedding_filepath: str,
pDC50_threshold: float = 6.0,
Dmax_threshold: float = 0.6,
use_smote: bool = True,
smote_k_neighbors: int = 5,
active_label: str = 'Active',
disabled_embeddings: List[Literal['smiles', 'poi', 'e3', 'cell']] = [],
scaler: Optional[StandardScaler | Dict[str, StandardScaler]] = None,
use_single_scaler: Optional[bool] = None,
):
super(PROTAC_DataModule, self).__init__()
# Load the PROTAC dataset
self.protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
# Map E3 Ligase Iap to IAP
self.protac_df['E3 Ligase'] = self.protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
self.protac_df[active_label] = self.protac_df.apply(
lambda x: is_active(
x['DC50 (nM)'],
x['Dmax (%)'],
pDC50_threshold=pDC50_threshold,
Dmax_threshold=Dmax_threshold,
),
axis=1,
)
self.smiles2fp, self.protac_df = self.get_smiles2fp_and_avg_tanimoto(self.protac_df)
self.active_df = self.protac_df[self.protac_df[active_label].notna()].copy()
# Load embedding dictionaries
self.protein2embedding = load_protein2embedding(protein2embedding_filepath)
self.cell2embedding = load_cell2embedding(cell2embedding_filepath)
def setup(self, stage: str):
self.train_ds, self.val_ds, self.test_ds = get_datasets(
self.train_df,
self.val_df,
self.test_df,
self.protein2embedding,
self.cell2embedding,
self.smiles2fp,
use_smote=self.use_smote,
smote_k_neighbors=self.smote_k_neighbors,
active_label=self.active_label,
disabled_embeddings=self.disabled_embeddings,
scaler=self.scaler,
use_single_scaler=self.use_single_scaler,
)
def train_dataloader(self):
return DataLoader(self.train_ds, batch_size=32, shuffle=True)
def val_dataloader(self):
return DataLoader(self.val_ds, batch_size=32)
def test_dataloader(self):
return DataLoader(self.test_ds, batch_size=32)
@staticmethod
def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
""" Get the indices of the test set using a random split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
test_split (float): The percentage of the active PROTACs to use as the test set.
Returns:
pd.Index: The indices of the test set.
"""
return active_df.sample(frac=test_split, random_state=42).index
@staticmethod
def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index:
""" Get the indices of the test set using the E3 ligase split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
Returns:
pd.Index: The indices of the test set.
"""
encoder = OrdinalEncoder()
active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int)
test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
return test_df.index
@staticmethod
def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple:
""" Get the SMILES to fingerprint dictionary and the average Tanimoto similarity.
Args:
protac_df (pd.DataFrame): The DataFrame containing the PROTACs.
Returns:
tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity.
"""
unique_smiles = protac_df['Smiles'].unique().tolist()
smiles2fp = {}
for smiles in unique_smiles:
smiles2fp[smiles] = get_fingerprint(smiles)
tanimoto_matrix = defaultdict(list)
fps = list(smiles2fp.values())
# Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity
for i, (smiles1, fp1) in enumerate(zip(unique_smiles, fps)):
similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:]) # Only compute for i to end, avoiding duplicates
for j, similarity in enumerate(similarities):
distance = 1 - similarity
tanimoto_matrix[smiles1].append(distance) # Store as distance
if i != i + j:
tanimoto_matrix[unique_smiles[i + j]].append(distance) # Symmetric filling
# Calculate average Tanimoto distance for each unique SMILES
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
return smiles2fp, protac_df
@staticmethod
def get_tanimoto_split_indices(
active_df: pd.DataFrame,
active_label: str,
test_split: float,
n_bins_tanimoto: int = 200,
) -> pd.Index:
""" Get the indices of the test set using the Tanimoto-based split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity.
Returns:
pd.Index: The indices of the test set.
"""
tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
# Sort the groups so that samples with the highest tanimoto similarity,
# i.e., the "less similar" ones, are placed in the test set first
tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_label in test_df is roughly 50%.
for group in tanimoto_groups:
group_df = active_df[active_df['Tanimoto Group'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_label].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_label].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
return test_df.index
@staticmethod
def get_target_split_indices(active_df: pd.DataFrame, active_label: str, test_split: float) -> pd.Index:
""" Get the indices of the test set using the target-based split.
Args:
active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
active_label (str): The column containing the active/inactive information.
test_split (float): The percentage of the active PROTACs to use as the test set.
Returns:
pd.Index: The indices of the test set.
"""
encoder = OrdinalEncoder()
active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int)
test_df = []
# For each group, get the number of active and inactive entries. Then, add those
# entries to the test_df if: 1) the test_df lenght + the group entries is less
# 20% of the active_df lenght, and 2) the percentage of True and False entries
# in the active_label in test_df is roughly 50%.
# Start the loop from the groups containing the smallest number of entries.
for group in reversed(active_df['Uniprot'].value_counts().index):
group_df = active_df[active_df['Uniprot'] == group]
if test_df == []:
test_df.append(group_df)
continue
num_entries = len(group_df)
num_active_group = group_df[active_label].sum()
num_inactive_group = num_entries - num_active_group
tmp_test_df = pd.concat(test_df)
num_entries_test = len(tmp_test_df)
num_active_test = tmp_test_df[active_label].sum()
num_inactive_test = num_entries_test - num_active_test
# Check if the group entries can be added to the test_df
if num_entries_test + num_entries < test_split * len(active_df):
# Add anything at the beggining
if num_entries_test + num_entries < test_split / 2 * len(active_df):
test_df.append(group_df)
continue
# Be more selective and make sure that the percentage of active and
# inactive is balanced
if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
test_df.append(group_df)
test_df = pd.concat(test_df)
return test_df.index |