File size: 35,750 Bytes
b09510c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 |
# %% [markdown]
# # PROTAC-Degradation-Predictor
# %%
import pandas as pd
protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
protac_df.head()
# %%
# Get the unique Article IDs of the entries with NaN values in the Active column
nan_active = protac_df[protac_df['Active'].isna()]['Article DOI'].unique()
nan_active
# %%
# Map E3 Ligase Iap to IAP
protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
# %%
protac_df.columns
# %%
cells = sorted(protac_df['Cell Type'].dropna().unique().tolist())
print(f'Number of non-cleaned cell lines: {len(cells)}')
# %%
cells = sorted(protac_df['Cell Line Identifier'].dropna().unique().tolist())
print(f'Number of cleaned cell lines: {len(cells)}')
# %%
unlabeled_df = protac_df[protac_df['Active'].isna()]
print(f'Number of compounds in test set: {len(unlabeled_df)}')
# %% [markdown]
# ## Load Protein Embeddings
# %% [markdown]
# Protein embeddings downloaded from [Uniprot](https://www.uniprot.org/help/embeddings).
#
# Please note that running the following cell the first time might take a while.
# %%
import os
import urllib.request
download_link = "https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/embeddings/UP000005640_9606/per-protein.h5"
embeddings_path = "../data/uniprot2embedding.h5"
if not os.path.exists(embeddings_path):
# Download the file
print(f'Downloading embeddings from {download_link}')
urllib.request.urlretrieve(download_link, embeddings_path)
# %%
import h5py
import numpy as np
from tqdm.auto import tqdm
protein_embeddings = {}
with h5py.File("../data/uniprot2embedding.h5", "r") as file:
print(f"number of entries: {len(file.items()):,}")
uniprots = protac_df['Uniprot'].unique().tolist()
uniprots += protac_df['E3 Ligase Uniprot'].unique().tolist()
for i, sequence_id in tqdm(enumerate(uniprots), desc='Loading protein embeddings'):
try:
embedding = file[sequence_id][:]
protein_embeddings[sequence_id] = np.array(embedding)
if i < 10:
print(
f"\tid: {sequence_id}, "
f"\tembeddings shape: {embedding.shape}, "
f"\tembeddings mean: {np.array(embedding).mean()}"
)
except KeyError:
print(f'KeyError for {sequence_id}')
protein_embeddings[sequence_id] = np.zeros((1024,))
# %% [markdown]
# ## Load Cell Embeddings
# %%
import pickle
cell2embedding_filepath = '../data/cell2embedding.pkl'
with open(cell2embedding_filepath, 'rb') as f:
cell2embedding = pickle.load(f)
print(f'Loaded {len(cell2embedding)} cell lines')
# %%
emb_shape = cell2embedding[list(cell2embedding.keys())[0]].shape
# Assign all-zero vectors to cell lines that are not in the embedding file
for cell_line in protac_df['Cell Line Identifier'].unique():
if cell_line not in cell2embedding:
cell2embedding[cell_line] = np.zeros(emb_shape)
# %% [markdown]
# ## Precompute Molecular Fingerprints
# %%
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
morgan_radius = 15
n_bits = 1024
# fpgen = AllChem.GetAtomPairGenerator()
rdkit_fpgen = AllChem.GetRDKitFPGenerator(maxPath=5, fpSize=512)
morgan_fpgen = AllChem.GetMorganGenerator(radius=morgan_radius, fpSize=n_bits)
smiles2fp = {}
for smiles in tqdm(protac_df['Smiles'].unique().tolist(), desc='Precomputing fingerprints'):
# Get the fingerprint as a bit vector
morgan_fp = morgan_fpgen.GetFingerprint(Chem.MolFromSmiles(smiles))
# rdkit_fp = rdkit_fpgen.GetFingerprint(Chem.MolFromSmiles(smiles))
# fp = np.concatenate([morgan_fp, rdkit_fp])
smiles2fp[smiles] = morgan_fp
# Count the number of unique SMILES and the number of unique Morgan fingerprints
print(f'Number of unique SMILES: {len(smiles2fp)}')
print(f'Number of unique fingerprints: {len(set([tuple(fp) for fp in smiles2fp.values()]))}')
# Get the list of SMILES with overlapping fingerprints
overlapping_smiles = []
unique_fps = set()
for smiles, fp in smiles2fp.items():
if tuple(fp) in unique_fps:
overlapping_smiles.append(smiles)
else:
unique_fps.add(tuple(fp))
print(f'Number of SMILES with overlapping fingerprints: {len(overlapping_smiles)}')
print(f'Number of overlapping SMILES in protac_df: {len(protac_df[protac_df["Smiles"].isin(overlapping_smiles)])}')
# %%
# Get the pair-wise tanimoto similarity between the PROTAC fingerprints
from rdkit import DataStructs
from collections import defaultdict
tanimoto_matrix = defaultdict(list)
for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
fp1 = smiles2fp[smiles1]
# TODO: Use BulkTanimotoSimilarity
for j, smiles2 in enumerate(protac_df['Smiles'].unique()):
if j < i:
continue
fp2 = smiles2fp[smiles2]
tanimoto_dist = DataStructs.TanimotoSimilarity(fp1, fp2)
tanimoto_matrix[smiles1].append(tanimoto_dist)
avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)
# %%
# # Plot the distribution of the average Tanimoto similarity
# import seaborn as sns
# import matplotlib.pyplot as plt
# sns.histplot(protac_df['Avg Tanimoto'], bins=50)
# plt.xlabel('Average Tanimoto similarity')
# plt.ylabel('Count')
# plt.title('Distribution of average Tanimoto similarity')
# plt.grid(axis='y', alpha=0.5)
# plt.show()
# %%
smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}
# %% [markdown]
# ## Set the Column to Predict
# %%
# active_col = 'Active'
active_col = 'Active - OR'
from sklearn.preprocessing import StandardScaler
# %% [markdown]
# ## Define Torch Dataset
# %%
from imblearn.over_sampling import SMOTE, ADASYN
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
# %%
from torch.utils.data import Dataset, DataLoader
class PROTAC_Dataset(Dataset):
def __init__(
self,
protac_df,
protein_embeddings=protein_embeddings,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
use_smote=False,
oversampler=None,
use_ored_activity=False,
):
""" Initialize the PROTAC dataset
Args:
protac_df (pd.DataFrame): The PROTAC dataframe
protein_embeddings (dict): Dictionary of protein embeddings
cell2embedding (dict): Dictionary of cell line embeddings
smiles2fp (dict): Dictionary of SMILES to fingerprint
use_smote (bool): Whether to use SMOTE for oversampling
use_ored_activity (bool): Whether to use the 'Active - OR' column
"""
# Filter out examples with NaN in 'Active' column
self.data = protac_df # [~protac_df['Active'].isna()]
self.protein_embeddings = protein_embeddings
self.cell2embedding = cell2embedding
self.smiles2fp = smiles2fp
self.smiles_emb_dim = smiles2fp[list(smiles2fp.keys())[0]].shape[0]
self.protein_emb_dim = protein_embeddings[list(
protein_embeddings.keys())[0]].shape[0]
self.cell_emb_dim = cell2embedding[list(
cell2embedding.keys())[0]].shape[0]
self.active_label = 'Active - OR' if use_ored_activity else 'Active'
self.use_smote = use_smote
self.oversampler = oversampler
# Apply SMOTE
if self.use_smote:
self.apply_smote()
def apply_smote(self):
# Prepare the dataset for SMOTE
features = []
labels = []
for _, row in self.data.iterrows():
smiles_emb = smiles2fp[row['Smiles']]
poi_emb = protein_embeddings[row['Uniprot']]
e3_emb = protein_embeddings[row['E3 Ligase Uniprot']]
cell_emb = cell2embedding[row['Cell Line Identifier']]
features.append(np.hstack([
smiles_emb.astype(np.float32),
poi_emb.astype(np.float32),
e3_emb.astype(np.float32),
cell_emb.astype(np.float32),
]))
labels.append(row[self.active_label])
# Convert to numpy array
features = np.array(features).astype(np.float32)
labels = np.array(labels).astype(np.float32)
# Initialize SMOTE and fit
if self.oversampler is None:
oversampler = SMOTE(random_state=42)
else:
oversampler = self.oversampler
features_smote, labels_smote = oversampler.fit_resample(features, labels)
# Separate the features back into their respective embeddings
smiles_embs = features_smote[:, :self.smiles_emb_dim]
poi_embs = features_smote[:,
self.smiles_emb_dim:self.smiles_emb_dim+self.protein_emb_dim]
e3_embs = features_smote[:, self.smiles_emb_dim +
self.protein_emb_dim:self.smiles_emb_dim+2*self.protein_emb_dim]
cell_embs = features_smote[:, -self.cell_emb_dim:]
# Reconstruct the dataframe with oversampled data
df_smote = pd.DataFrame({
'Smiles': list(smiles_embs),
'Uniprot': list(poi_embs),
'E3 Ligase Uniprot': list(e3_embs),
'Cell Line Identifier': list(cell_embs),
self.active_label: labels_smote
})
self.data = df_smote
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.use_smote:
# NOTE: We do not need to look up the embeddings anymore
elem = {
'smiles_emb': self.data['Smiles'].iloc[idx],
'poi_emb': self.data['Uniprot'].iloc[idx],
'e3_emb': self.data['E3 Ligase Uniprot'].iloc[idx],
'cell_emb': self.data['Cell Line Identifier'].iloc[idx],
'active': self.data[self.active_label].iloc[idx],
}
else:
elem = {
'smiles_emb': self.smiles2fp[self.data['Smiles'].iloc[idx]].astype(np.float32),
'poi_emb': self.protein_embeddings[self.data['Uniprot'].iloc[idx]].astype(np.float32),
'e3_emb': self.protein_embeddings[self.data['E3 Ligase Uniprot'].iloc[idx]].astype(np.float32),
'cell_emb': self.cell2embedding[self.data['Cell Line Identifier'].iloc[idx]].astype(np.float32),
'active': 1. if self.data[self.active_label].iloc[idx] else 0.,
}
return elem
# %%
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pytorch_lightning as pl
from torchmetrics import (
Accuracy,
AUROC,
Precision,
Recall,
F1Score,
)
from torchmetrics import MetricCollection
# Ignore UserWarning from PyTorch Lightning
warnings.filterwarnings("ignore", ".*does not have many workers.*")
class PROTAC_Model(pl.LightningModule):
def __init__(
self,
hidden_dim,
smiles_emb_dim=1024,
poi_emb_dim=1024,
e3_emb_dim=1024,
cell_emb_dim=768,
batch_size=32,
learning_rate=1e-3,
dropout=0.2,
train_dataset=None,
val_dataset=None,
test_dataset=None,
disabled_embeddings=[],
):
super().__init__()
self.poi_emb_dim = poi_emb_dim
self.e3_emb_dim = e3_emb_dim
self.cell_emb_dim = cell_emb_dim
self.smiles_emb_dim = smiles_emb_dim
self.hidden_dim = hidden_dim
self.batch_size = batch_size
self.learning_rate = learning_rate
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.disabled_embeddings = disabled_embeddings
# Set our init args as class attributes
self.__dict__.update(locals()) # Add arguments as attributes
# Save the arguments passed to init
ignore_args_as_hyperparams = [
'train_dataset',
'test_dataset',
'val_dataset',
]
self.save_hyperparameters(ignore=ignore_args_as_hyperparams)
if 'poi' not in self.disabled_embeddings:
self.poi_emb = nn.Linear(poi_emb_dim, hidden_dim)
# # Set the POI surrogate model as a Sequential model
# self.poi_emb = nn.Sequential(
# nn.Linear(poi_emb_dim, hidden_dim),
# nn.GELU(),
# nn.Dropout(p=dropout),
# nn.Linear(hidden_dim, hidden_dim),
# # nn.ReLU(),
# # nn.Dropout(p=dropout),
# )
if 'e3' not in self.disabled_embeddings:
self.e3_emb = nn.Linear(e3_emb_dim, hidden_dim)
# self.e3_emb = nn.Sequential(
# nn.Linear(e3_emb_dim, hidden_dim),
# # nn.ReLU(),
# nn.Dropout(p=dropout),
# # nn.Linear(hidden_dim, hidden_dim),
# # nn.ReLU(),
# # nn.Dropout(p=dropout),
# )
if 'cell' not in self.disabled_embeddings:
self.cell_emb = nn.Linear(cell_emb_dim, hidden_dim)
# self.cell_emb = nn.Sequential(
# nn.Linear(cell_emb_dim, hidden_dim),
# # nn.ReLU(),
# nn.Dropout(p=dropout),
# # nn.Linear(hidden_dim, hidden_dim),
# # nn.ReLU(),
# # nn.Dropout(p=dropout),
# )
if 'smiles' not in self.disabled_embeddings:
self.smiles_emb = nn.Linear(smiles_emb_dim, hidden_dim)
# self.smiles_emb = nn.Sequential(
# nn.Linear(smiles_emb_dim, hidden_dim),
# # nn.ReLU(),
# nn.Dropout(p=dropout),
# # nn.Linear(hidden_dim, hidden_dim),
# # nn.ReLU(),
# # nn.Dropout(p=dropout),
# )
self.fc1 = nn.Linear(
hidden_dim * (4 - len(self.disabled_embeddings)), hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
self.dropout = nn.Dropout(p=dropout)
stages = ['train_metrics', 'val_metrics', 'test_metrics']
self.metrics = nn.ModuleDict({s: MetricCollection({
'acc': Accuracy(task='binary'),
'roc_auc': AUROC(task='binary'),
'precision': Precision(task='binary'),
'recall': Recall(task='binary'),
'f1_score': F1Score(task='binary'),
'opt_score': Accuracy(task='binary') + F1Score(task='binary'),
'hp_metric': Accuracy(task='binary'),
}, prefix=s.replace('metrics', '')) for s in stages})
# Misc settings
self.missing_dataset_error = \
'''Class variable `{0}` is None. If the model was loaded from a checkpoint, the dataset must be set manually:
model = {1}.load_from_checkpoint('checkpoint.ckpt')
model.{0} = my_{0}
'''
def forward(self, poi_emb, e3_emb, cell_emb, smiles_emb):
embeddings = []
if 'poi' not in self.disabled_embeddings:
embeddings.append(self.poi_emb(poi_emb))
if 'e3' not in self.disabled_embeddings:
embeddings.append(self.e3_emb(e3_emb))
if 'cell' not in self.disabled_embeddings:
embeddings.append(self.cell_emb(cell_emb))
if 'smiles' not in self.disabled_embeddings:
embeddings.append(self.smiles_emb(smiles_emb))
x = torch.cat(embeddings, dim=1)
x = self.dropout(F.gelu(self.fc1(x)))
x = self.dropout(F.gelu(self.fc2(x)))
x = self.fc3(x)
return x
def step(self, batch, batch_idx, stage):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y = batch['active'].float().unsqueeze(1)
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
loss = F.binary_cross_entropy_with_logits(y_hat, y)
self.metrics[f'{stage}_metrics'].update(y_hat, y)
self.log(f'{stage}_loss', loss, on_epoch=True, prog_bar=True)
self.log_dict(self.metrics[f'{stage}_metrics'], on_epoch=True)
return loss
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'train')
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'val')
def test_step(self, batch, batch_idx):
return self.step(batch, batch_idx, 'test')
def configure_optimizers(self):
return optim.Adam(self.parameters(), lr=self.learning_rate)
def predict_step(self, batch, batch_idx):
poi_emb = batch['poi_emb']
e3_emb = batch['e3_emb']
cell_emb = batch['cell_emb']
smiles_emb = batch['smiles_emb']
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
return torch.sigmoid(y_hat)
def train_dataloader(self):
if self.train_dataset is None:
format = 'train_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
# drop_last=True,
)
def val_dataloader(self):
if self.val_dataset is None:
format = 'val_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
)
def test_dataloader(self):
if self.test_dataset is None:
format = 'test_dataset', self.__class__.__name__
raise ValueError(self.missing_dataset_error.format(*format))
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
)
# %% [markdown]
# ## Test Sets
# %% [markdown]
# We want a different test set per Cross-Validation (CV) experiment (see further down). We are interested in three scenarios:
# * Randomly splitting the data into training and test sets. Hence, the test st shall contain unique SMILES and Uniprots
# * Splitting the data according to their Uniprot. Hence, the test set shall contain unique Uniprots
# * Splitting the data according to their SMILES, _i.e._, the test set shall contain unique SMILES
# %%
test_indeces = {}
# %% [markdown]
# Isolating the unique SMILES and Uniprots:
# %%
active_df = protac_df[protac_df[active_col].notna()].copy()
# Get the unique SMILES and Uniprot
unique_smiles = active_df['Smiles'].value_counts() == 1
unique_uniprot = active_df['Uniprot'].value_counts() == 1
print(f'Number of unique SMILES: {unique_smiles.sum()}')
print(f'Number of unique Uniprot: {unique_uniprot.sum()}')
# Sample 1% of the len(active_df) from unique SMILES and Uniprot and get the
# indices for a test set
n = int(0.05 * len(active_df)) // 2
unique_smiles = unique_smiles[unique_smiles].sample(n=n, random_state=42)
# unique_uniprot = unique_uniprot[unique_uniprot].sample(n=, random_state=42)
unique_indices = active_df[
active_df['Smiles'].isin(unique_smiles.index) &
active_df['Uniprot'].isin(unique_uniprot.index)
].index
print(f'Number of unique indices: {len(unique_indices)} ({len(unique_indices) / len(active_df):.1%})')
test_indeces['random'] = unique_indices
# # Get the test set
# test_df = active_df.loc[unique_indices]
# # Bar plot of the test Active distribution as percentage
# test_df['Active'].value_counts(normalize=True).plot(kind='bar')
# plt.title('Test set Active distribution')
# plt.show()
# # Bar plot of the test Active - OR distribution as percentage
# test_df['Active - OR'].value_counts(normalize=True).plot(kind='bar')
# plt.title('Test set Active - OR distribution')
# plt.show()
# %% [markdown]
# Isolating the unique Uniprots:
# %%
active_df = protac_df[protac_df[active_col].notna()].copy()
unique_uniprot = active_df['Uniprot'].value_counts() == 1
print(f'Number of unique Uniprot: {unique_uniprot.sum()}')
# NOTE: Since they are very few, all unique Uniprot will be used as test set.
# Get the indices for a test set
unique_indices = active_df[active_df['Uniprot'].isin(unique_uniprot.index)].index
test_indeces['uniprot'] = unique_indices
print(f'Number of unique indices: {len(unique_indices)} ({len(unique_indices) / len(active_df):.1%})')
# %% [markdown]
# DEPRECATED: The following results in a too Before starting any training, we isolate a small group of test data. Each element in the test set is selected so that all the following conditions are met:
# * its SMILES is unique
# * its POI is unique
# * its (SMILES, POI) pair is unique
# %%
active_df = protac_df[protac_df[active_col].notna()]
# Find the samples that:
# * have their SMILES appearing only once in the dataframe
# * have their Uniprot appearing only once in the dataframe
# * have their (Smiles, Uniprot) pair appearing only once in the dataframe
unique_smiles = active_df['Smiles'].value_counts() == 1
unique_uniprot = active_df['Uniprot'].value_counts() == 1
unique_smiles_uniprot = active_df.groupby(['Smiles', 'Uniprot']).size() == 1
# Get the indices of the unique samples
unique_smiles_idx = active_df['Smiles'].map(unique_smiles)
unique_uniprot_idx = active_df['Uniprot'].map(unique_uniprot)
unique_smiles_uniprot_idx = active_df.set_index(['Smiles', 'Uniprot']).index.map(unique_smiles_uniprot)
# Cross the indices to get the unique samples
# unique_samples = active_df[unique_smiles_idx & unique_uniprot_idx & unique_smiles_uniprot_idx].index
unique_samples = active_df[unique_smiles_idx & unique_uniprot_idx].index
test_df = active_df.loc[unique_samples]
warnings.filterwarnings("ignore", ".*FixedLocator*")
# %% [markdown]
# ## Cross-Validation Training
# %% [markdown]
# Cross validation training with 5 splits. The split operation is done in three different ways:
#
# * Random split
# * POI-wise: some POIs never in both splits
# * Least Tanimoto similarity PROTAC-wise
# %% [markdown]
# ### Plotting CV Folds
# %%
from sklearn.model_selection import (
StratifiedKFold,
StratifiedGroupKFold,
)
from sklearn.preprocessing import OrdinalEncoder
# NOTE: When set to 60, it will result in 29 groups, with nice distributions of
# the number of unique groups in the train and validation sets, together with
# the number of active and inactive PROTACs.
n_bins_tanimoto = 60 if active_col == 'Active' else 400
n_splits = 5
# The train and validation sets will be created from the active PROTACs only,
# i.e., the ones with 'Active' column not NaN, and that are NOT in the test set
active_df = protac_df[protac_df[active_col].notna()]
train_val_df = active_df[~active_df.index.isin(test_df.index)].copy()
# Make three groups for CV:
# * Random split
# * Split by Uniprot (POI)
# * Split by least tanimoto similarity PROTAC-wise
groups = [
'random',
'uniprot',
'tanimoto',
]
for group_type in groups:
if group_type == 'random':
kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)
groups = None
elif group_type == 'uniprot':
# Split by Uniprot
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
encoder = OrdinalEncoder()
groups = encoder.fit_transform(train_val_df['Uniprot'].values.reshape(-1, 1))
print(f'Number of unique groups: {len(encoder.categories_[0])}')
elif group_type == 'tanimoto':
# Split by tanimoto similarity, i.e., group_type PROTACs with similar Avg Tanimoto
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
tanimoto_groups = pd.cut(train_val_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
groups = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1))
print(f'Number of unique groups: {len(encoder.categories_[0])}')
X = train_val_df.drop(columns=active_col)
y = train_val_df[active_col].tolist()
# print(f'Group: {group_type}')
# fig, ax = plt.subplots(figsize=(6, 3))
# plot_cv_indices(kf, X=X, y=y, group=groups, ax=ax, n_splits=n_splits)
# plt.tight_layout()
# plt.show()
stats = []
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
stat = {
'fold': k,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
'train_active (%)': train_df[active_col].sum() / len(train_df) * 100,
'train_inactive (%)': (len(train_df) - train_df[active_col].sum()) / len(train_df) * 100,
'val_active (%)': val_df[active_col].sum() / len(val_df) * 100,
'val_inactive (%)': (len(val_df) - val_df[active_col].sum()) / len(val_df) * 100,
'num_leaking_uniprot': len(set(train_df['Uniprot']).intersection(set(val_df['Uniprot']))),
'num_leaking_smiles': len(set(train_df['Smiles']).intersection(set(val_df['Smiles']))),
}
if group_type != 'random':
stat['train_unique_groups'] = len(np.unique(groups[train_index]))
stat['val_unique_groups'] = len(np.unique(groups[val_index]))
stats.append(stat)
print('-' * 120)
# %% [markdown]
# ### Run CV
# %%
import warnings
# Seed everything in pytorch lightning
pl.seed_everything(42)
def train_model(
train_df,
val_df,
test_df=None,
hidden_dim=768,
batch_size=8,
learning_rate=2e-5,
max_epochs=50,
smiles_emb_dim=1024,
smote_n_neighbors=5,
use_ored_activity=False if active_col == 'Active' else True,
fast_dev_run=False,
disabled_embeddings=[],
) -> tuple:
""" Train a PROTAC model using the given datasets and hyperparameters.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
hidden_dim (int): The hidden dimension of the model.
batch_size (int): The batch size.
learning_rate (float): The learning rate.
max_epochs (int): The maximum number of epochs.
smiles_emb_dim (int): The dimension of the SMILES embeddings.
smote_n_neighbors (int): The number of neighbors for the SMOTE oversampler.
use_ored_activity (bool): Whether to use the ORED activity column.
fast_dev_run (bool): Whether to run a fast development run.
disabled_embeddings (list): The list of disabled embeddings.
Returns:
tuple: The trained model, the trainer, and the metrics.
"""
oversampler = SMOTE(k_neighbors=smote_n_neighbors, random_state=42)
train_ds = PROTAC_Dataset(
train_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_smote=True,
oversampler=oversampler,
use_ored_activity=use_ored_activity,
)
val_ds = PROTAC_Dataset(
val_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_ored_activity=use_ored_activity,
)
if test_df is not None:
test_ds = PROTAC_Dataset(
test_df,
protein_embeddings,
cell2embedding,
smiles2fp,
use_ored_activity=use_ored_activity,
)
logger = pl.loggers.TensorBoardLogger(
save_dir='../logs',
name='protac',
)
callbacks = [
pl.callbacks.EarlyStopping(
monitor='train_loss',
patience=10,
mode='max',
verbose=True,
),
# pl.callbacks.ModelCheckpoint(
# monitor='val_acc',
# mode='max',
# verbose=True,
# filename='{epoch}-{val_metrics_opt_score:.4f}',
# ),
]
# Define Trainer
trainer = pl.Trainer(
logger=logger,
callbacks=callbacks,
max_epochs=max_epochs,
fast_dev_run=fast_dev_run,
enable_model_summary=False,
enable_checkpointing=False,
)
model = PROTAC_Model(
hidden_dim=hidden_dim,
smiles_emb_dim=smiles_emb_dim,
poi_emb_dim=1024,
e3_emb_dim=1024,
cell_emb_dim=768,
batch_size=batch_size,
learning_rate=learning_rate,
train_dataset=train_ds,
val_dataset=val_ds,
test_dataset=test_ds if test_df is not None else None,
disabled_embeddings=disabled_embeddings,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
trainer.fit(model)
metrics = trainer.validate(model, verbose=False)[0]
if test_df is not None:
test_metrics = trainer.test(model, verbose=False)[0]
metrics.update(test_metrics)
return model, trainer, metrics
# %% [markdown]
# Setup hyperparameter optimization:
# %%
import optuna
import pandas as pd
def objective(
trial,
train_df,
val_df,
hidden_dim_options,
batch_size_options,
learning_rate_options,
max_epochs_options,
fast_dev_run=False,
) -> float:
# Generate the hyperparameters
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
learning_rate = trial.suggest_loguniform('learning_rate', *learning_rate_options)
max_epochs = trial.suggest_categorical('max_epochs', max_epochs_options)
# Train the model with the current set of hyperparameters
_, _, metrics = train_model(
train_df,
val_df,
hidden_dim=hidden_dim,
batch_size=batch_size,
learning_rate=learning_rate,
max_epochs=max_epochs,
fast_dev_run=fast_dev_run,
)
# Metrics is a dictionary containing at least the validation loss
val_loss = metrics['val_loss']
val_acc = metrics['val_acc']
val_roc_auc = metrics['val_roc_auc']
# Optuna aims to minimize the objective
return val_loss - val_acc - val_roc_auc
def hyperparameter_tuning_and_training(
train_df,
val_df,
test_df,
fast_dev_run=False,
n_trials=20,
) -> tuple:
""" Hyperparameter tuning and training of a PROTAC model.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
fast_dev_run (bool): Whether to run a fast development run.
Returns:
tuple: The trained model, the trainer, and the best metrics.
"""
# Define the search space
hidden_dim_options = [256, 512, 768]
batch_size_options = [8, 16, 32]
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
max_epochs_options = [10, 20, 50]
# Create an Optuna study object
study = optuna.create_study(direction='minimize')
study.optimize(lambda trial: objective(
trial,
train_df,
val_df,
hidden_dim_options,
batch_size_options,
learning_rate_options,
max_epochs_options,
fast_dev_run=fast_dev_run,),
n_trials=n_trials,
)
# Retrieve the best hyperparameters
best_params = study.best_params
best_hidden_dim = best_params['hidden_dim']
best_batch_size = best_params['batch_size']
best_learning_rate = best_params['learning_rate']
best_max_epochs = best_params['max_epochs']
# Retrain the model with the best hyperparameters
model, trainer, metrics = train_model(
train_df,
val_df,
test_df,
hidden_dim=best_hidden_dim,
batch_size=best_batch_size,
learning_rate=best_learning_rate,
max_epochs=best_max_epochs,
fast_dev_run=fast_dev_run,
)
# Return the best metrics
return model, trainer, metrics
# Example usage
# train_df, val_df, test_df = load_your_data() # You need to load your datasets here
# model, trainer, best_metrics = hyperparameter_tuning_and_training(train_df, val_df, test_df)
# %% [markdown]
# Loop over the different splits and train the model:
# %%
n_splits = 5
report = []
active_df = protac_df[protac_df[active_col].notna()]
train_val_df = active_df[~active_df.index.isin(unique_samples)]
# Make directory ../reports if it does not exist
if not os.path.exists('../reports'):
os.makedirs('../reports')
for group_type in ['random', 'uniprot', 'tanimoto']:
print(f'Starting CV for group type: {group_type}')
# Setup CV iterator and groups
if group_type == 'random':
kf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=42)
groups = None
elif group_type == 'uniprot':
# Split by Uniprot
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
encoder = OrdinalEncoder()
groups = encoder.fit_transform(train_val_df['Uniprot'].values.reshape(-1, 1))
elif group_type == 'tanimoto':
# Split by tanimoto similarity, i.e., group_type PROTACs with similar Avg Tanimoto
kf = StratifiedGroupKFold(n_splits=n_splits, shuffle=True, random_state=42)
tanimoto_groups = pd.cut(train_val_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
encoder = OrdinalEncoder()
groups = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1))
# Start the CV over the folds
X = train_val_df.drop(columns=active_col)
y = train_val_df[active_col].tolist()
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
stats = {
'fold': k,
'group_type': group_type,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
'train_active_perc': train_df[active_col].sum() / len(train_df),
'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
'val_active_perc': val_df[active_col].sum() / len(val_df),
'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
'test_active_perc': test_df[active_col].sum() / len(test_df),
'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
'num_leaking_uniprot': len(set(train_df['Uniprot']).intersection(set(val_df['Uniprot']))),
'num_leaking_smiles': len(set(train_df['Smiles']).intersection(set(val_df['Smiles']))),
}
if group_type != 'random':
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
# Train and evaluate the model
# model, trainer, metrics = train_model(train_df, val_df, test_df)
model, trainer, metrics = hyperparameter_tuning_and_training(
train_df,
val_df,
test_df,
fast_dev_run=False,
n_trials=50,
)
stats.update(metrics)
del model
del trainer
report.append(stats)
report = pd.DataFrame(report)
report.to_csv(
f'../reports/cv_report_hparam_search_{n_splits}-splits.csv', index=False,
)
|