File size: 14,814 Bytes
fda7af7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "from collections import defaultdict\n",
    "import warnings\n",
    "import logging\n",
    "from typing import Literal\n",
    "\n",
    "sys.path.append('~/PROTAC-Degradation-Predictor/protac_degradation_predictor')\n",
    "import protac_degradation_predictor as pdp\n",
    "\n",
    "import pytorch_lightning as pl\n",
    "from rdkit import Chem\n",
    "from rdkit.Chem import AllChem\n",
    "from rdkit import DataStructs\n",
    "from jsonargparse import CLI\n",
    "import pandas as pd\n",
    "# Import tqdm for notebook\n",
    "from tqdm.notebook import tqdm\n",
    "import numpy as np\n",
    "from sklearn.preprocessing import OrdinalEncoder\n",
    "from sklearn.model_selection import (\n",
    "    StratifiedKFold,\n",
    "    StratifiedGroupKFold,\n",
    ")\n",
    "\n",
    "\n",
    "active_col = 'Active (Dmax 0.6, pDC50 6.0)'\n",
    "pDC50_threshold = 6.0\n",
    "Dmax_threshold = 0.6\n",
    "\n",
    "protac_df = pd.read_csv('~/PROTAC-Degradation-Predictor/data/PROTAC-Degradation-DB.csv')\n",
    "protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')\n",
    "protac_df[active_col] = protac_df.apply(\n",
    "    lambda x: pdp.is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "771"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:\n",
    "    \"\"\" Get the indices of the test set using a random split.\n",
    "    \n",
    "    Args:\n",
    "        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.\n",
    "        test_split (float): The percentage of the active PROTACs to use as the test set.\n",
    "    \n",
    "    Returns:\n",
    "        pd.Index: The indices of the test set.\n",
    "    \"\"\"\n",
    "    test_df = active_df.sample(frac=test_split, random_state=42)\n",
    "    return test_df.index\n",
    "\n",
    "active_df = protac_df[protac_df[active_col].notna()].copy()\n",
    "test_split = 0.1\n",
    "test_indices = get_random_split_indices(active_df, test_split)\n",
    "train_val_df = active_df[~active_df.index.isin(test_indices)].copy()\n",
    "len(train_val_df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "import optuna\n",
    "\n",
    "def objective(trial: optuna.Trial, verbose: int = 0) -> float:\n",
    "    \n",
    "    radius = trial.suggest_int('radius', 1, 15)\n",
    "    fpsize = trial.suggest_int('fpsize', 128, 2048, step=128)\n",
    "\n",
    "    morgan_fpgen = AllChem.GetMorganGenerator(\n",
    "        radius=radius,\n",
    "        fpSize=fpsize,\n",
    "        includeChirality=True,\n",
    "    )\n",
    "\n",
    "    smiles2fp = {}\n",
    "    for smiles in train_val_df['Smiles'].unique().tolist():\n",
    "        smiles2fp[smiles] = pdp.get_fingerprint(smiles, morgan_fpgen)\n",
    "\n",
    "    # Count the number of unique SMILES and the number of unique Morgan fingerprints\n",
    "    unique_fps = set([tuple(fp) for fp in smiles2fp.values()])\n",
    "    # Get the list of SMILES with overlapping fingerprints\n",
    "    overlapping_smiles = []\n",
    "    unique_fps = set()\n",
    "    for smiles, fp in smiles2fp.items():\n",
    "        if tuple(fp) in unique_fps:\n",
    "            overlapping_smiles.append(smiles)\n",
    "        else:\n",
    "            unique_fps.add(tuple(fp))\n",
    "    num_overlaps = len(train_val_df[train_val_df[\"Smiles\"].isin(overlapping_smiles)])\n",
    "    num_overlaps_tot = len(protac_df[protac_df[\"Smiles\"].isin(overlapping_smiles)])\n",
    "\n",
    "    if verbose:\n",
    "        print(f'Radius: {radius}')\n",
    "        print(f'FP length: {fpsize}')\n",
    "        print(f'Number of unique SMILES: {len(smiles2fp)}')\n",
    "        print(f'Number of unique fingerprints: {len(unique_fps)}')\n",
    "        print(f'Number of SMILES with overlapping fingerprints: {len(overlapping_smiles)}')\n",
    "        print(f'Number of overlapping SMILES in train_val_df: {num_overlaps}')\n",
    "        print(f'Number of overlapping SMILES in protac_df: {num_overlaps_tot}')\n",
    "    return num_overlaps + radius + fpsize / 100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[I 2024-04-29 11:28:05,626] A new study created in memory with name: no-name-4db5d822-6220-4ab8-bc3a-c776b0e5cac2\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "678150f59ec548bb89562e2230993989",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/50 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[I 2024-04-29 11:28:07,705] Trial 0 finished with value: 39.480000000000004 and parameters: {'radius': 6, 'fpsize': 2048}. Best is trial 0 with value: 39.480000000000004.\n",
      "[I 2024-04-29 11:28:09,590] Trial 1 finished with value: 23.8 and parameters: {'radius': 11, 'fpsize': 1280}. Best is trial 1 with value: 23.8.\n",
      "[I 2024-04-29 11:28:10,474] Trial 2 finished with value: 131.84 and parameters: {'radius': 3, 'fpsize': 384}. Best is trial 1 with value: 23.8.\n",
      "[I 2024-04-29 11:28:11,978] Trial 3 finished with value: 281.92 and parameters: {'radius': 1, 'fpsize': 1792}. Best is trial 1 with value: 23.8.\n",
      "[I 2024-04-29 11:28:13,994] Trial 4 finished with value: 25.36 and parameters: {'radius': 10, 'fpsize': 1536}. Best is trial 1 with value: 23.8.\n",
      "[I 2024-04-29 11:28:15,642] Trial 5 finished with value: 284.48 and parameters: {'radius': 1, 'fpsize': 2048}. Best is trial 1 with value: 23.8.\n",
      "[I 2024-04-29 11:28:17,154] Trial 6 finished with value: 18.12 and parameters: {'radius': 13, 'fpsize': 512}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:18,057] Trial 7 finished with value: 131.84 and parameters: {'radius': 3, 'fpsize': 384}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:19,570] Trial 8 finished with value: 41.519999999999996 and parameters: {'radius': 5, 'fpsize': 1152}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:20,860] Trial 9 finished with value: 23.4 and parameters: {'radius': 7, 'fpsize': 640}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:22,631] Trial 10 finished with value: 22.68 and parameters: {'radius': 15, 'fpsize': 768}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:24,427] Trial 11 finished with value: 22.68 and parameters: {'radius': 15, 'fpsize': 768}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:25,756] Trial 12 finished with value: 92.28 and parameters: {'radius': 15, 'fpsize': 128}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:27,466] Trial 13 finished with value: 20.96 and parameters: {'radius': 12, 'fpsize': 896}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:29,156] Trial 14 finished with value: 20.96 and parameters: {'radius': 12, 'fpsize': 896}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:30,727] Trial 15 finished with value: 18.12 and parameters: {'radius': 13, 'fpsize': 512}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:31,842] Trial 16 finished with value: 22.28 and parameters: {'radius': 9, 'fpsize': 128}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:33,365] Trial 17 finished with value: 18.12 and parameters: {'radius': 13, 'fpsize': 512}. Best is trial 6 with value: 18.12.\n",
      "[I 2024-04-29 11:28:34,801] Trial 18 finished with value: 16.84 and parameters: {'radius': 13, 'fpsize': 384}. Best is trial 18 with value: 16.84.\n",
      "[I 2024-04-29 11:28:35,986] Trial 19 finished with value: 13.56 and parameters: {'radius': 9, 'fpsize': 256}. Best is trial 19 with value: 13.56.\n",
      "[I 2024-04-29 11:28:37,122] Trial 20 finished with value: 14.56 and parameters: {'radius': 8, 'fpsize': 256}. Best is trial 19 with value: 13.56.\n",
      "[I 2024-04-29 11:28:38,175] Trial 21 finished with value: 30.28 and parameters: {'radius': 8, 'fpsize': 128}. Best is trial 19 with value: 13.56.\n",
      "[I 2024-04-29 11:28:39,406] Trial 22 finished with value: 13.56 and parameters: {'radius': 9, 'fpsize': 256}. Best is trial 19 with value: 13.56.\n",
      "[I 2024-04-29 11:28:40,649] Trial 23 finished with value: 13.56 and parameters: {'radius': 9, 'fpsize': 256}. Best is trial 19 with value: 13.56.\n",
      "[I 2024-04-29 11:28:41,868] Trial 24 finished with value: 12.56 and parameters: {'radius': 10, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:43,109] Trial 25 finished with value: 12.56 and parameters: {'radius': 10, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:44,587] Trial 26 finished with value: 16.4 and parameters: {'radius': 10, 'fpsize': 640}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:46,599] Trial 27 finished with value: 25.08 and parameters: {'radius': 11, 'fpsize': 1408}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:48,015] Trial 28 finished with value: 31.96 and parameters: {'radius': 6, 'fpsize': 896}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:49,347] Trial 29 finished with value: 23.4 and parameters: {'radius': 7, 'fpsize': 640}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:51,503] Trial 30 finished with value: 27.64 and parameters: {'radius': 11, 'fpsize': 1664}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:52,657] Trial 31 finished with value: 13.56 and parameters: {'radius': 9, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:53,840] Trial 32 finished with value: 12.56 and parameters: {'radius': 10, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:55,159] Trial 33 finished with value: 13.84 and parameters: {'radius': 10, 'fpsize': 384}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:56,140] Trial 34 finished with value: 39.28 and parameters: {'radius': 7, 'fpsize': 128}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:57,508] Trial 35 finished with value: 14.84 and parameters: {'radius': 11, 'fpsize': 384}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:28:58,900] Trial 36 finished with value: 15.120000000000001 and parameters: {'radius': 10, 'fpsize': 512}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:00,203] Trial 37 finished with value: 14.56 and parameters: {'radius': 12, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:02,225] Trial 38 finished with value: 49.2 and parameters: {'radius': 5, 'fpsize': 1920}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:03,942] Trial 39 finished with value: 22.52 and parameters: {'radius': 8, 'fpsize': 1152}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:05,240] Trial 40 finished with value: 13.84 and parameters: {'radius': 10, 'fpsize': 384}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:06,396] Trial 41 finished with value: 13.56 and parameters: {'radius': 9, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:07,422] Trial 42 finished with value: 30.28 and parameters: {'radius': 8, 'fpsize': 128}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:08,590] Trial 43 finished with value: 13.56 and parameters: {'radius': 9, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:09,949] Trial 44 finished with value: 14.84 and parameters: {'radius': 11, 'fpsize': 384}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:11,378] Trial 45 finished with value: 15.120000000000001 and parameters: {'radius': 10, 'fpsize': 512}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:12,637] Trial 46 finished with value: 26.4 and parameters: {'radius': 6, 'fpsize': 640}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:14,232] Trial 47 finished with value: 18.68 and parameters: {'radius': 11, 'fpsize': 768}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:14,904] Trial 48 finished with value: 214.28 and parameters: {'radius': 2, 'fpsize': 128}. Best is trial 24 with value: 12.56.\n",
      "[I 2024-04-29 11:29:16,323] Trial 49 finished with value: 16.56 and parameters: {'radius': 14, 'fpsize': 256}. Best is trial 24 with value: 12.56.\n"
     ]
    }
   ],
   "source": [
    "sampler = optuna.samplers.TPESampler(seed=42)\n",
    "study = optuna.create_study(sampler=sampler, direction='minimize')\n",
    "study.optimize(objective, n_trials=50, show_progress_bar=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Radius: 10\n",
      "FP length: 256\n",
      "Number of unique SMILES: 532\n",
      "Number of unique fingerprints: 532\n",
      "Number of SMILES with overlapping fingerprints: 0\n",
      "Number of overlapping SMILES in train_val_df: 0\n",
      "Number of overlapping SMILES in protac_df: 0\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "12.56"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Run objective with best params and verbose\n",
    "objective(study.best_trial, verbose=1)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}