Spaces:
Sleeping
Sleeping
File size: 3,005 Bytes
b8a29bf d8682b4 30e4262 b8a29bf 30e4262 fe85304 b8a29bf 1ec0e70 b8a29bf 411d6c8 b8a29bf d8682b4 b8a29bf 1ec0e70 38b5697 1ec0e70 61c94e1 fe85304 61c94e1 1ec0e70 30e4262 1ec0e70 fe85304 b8a29bf 30e4262 b8a29bf fe85304 b8a29bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
import azure.cognitiveservices.speech as speechsdk
def assess_pronunciation(audio_file, reference_text):
# Configure Azure Speech Service
speech_key = "YourAzureSpeechServiceKey"
service_region = "YourServiceRegion"
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
# Set up the audio configuration
audio_config = speechsdk.audio.AudioConfig(filename=audio_file)
# Create pronunciation assessment config
pronunciation_config = speechsdk.PronunciationAssessmentConfig(
reference_text=reference_text,
grading_system=speechsdk.PronunciationAssessmentGradingSystem.HundredMark,
granularity=speechsdk.PronunciationAssessmentGranularity.Phoneme
)
pronunciation_config.enable_prosody_assessment()
# Create the recognizer
recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)
pronunciation_config.apply_to(recognizer)
# Recognize speech and assess pronunciation
result = recognizer.recognize_once()
# Debug information
print(f"Recognition result reason: {result.reason}")
if result.reason == speechsdk.ResultReason.RecognizedSpeech:
pronunciation_result = speechsdk.PronunciationAssessmentResult(result)
# Extract and format the results
accuracy_score = pronunciation_result.accuracy_score
fluency_score = pronunciation_result.fluency_score
completeness_score = pronunciation_result.completeness_score
prosody_score = pronunciation_result.prosody_score
return {
"Accuracy": accuracy_score,
"Fluency": fluency_score,
"Completeness": completeness_score,
"Prosody": prosody_score
}
elif result.reason == speechsdk.ResultReason.NoMatch:
print("NOMATCH: Speech could not be recognized.")
return {"Error": "Speech could not be recognized. Please try again with a clearer audio."}
elif result.reason == speechsdk.ResultReason.Canceled:
cancellation_details = speechsdk.CancellationDetails(result)
print(f"CANCELED: Reason={cancellation_details.reason}")
if cancellation_details.reason == speechsdk.CancellationReason.Error:
print(f"CANCELED: ErrorCode={cancellation_details.error_code}")
print(f"CANCELED: ErrorDetails={cancellation_details.error_details}")
print("CANCELED: Did you update the subscription info?")
return {"Error": f"Speech recognition canceled: {cancellation_details.error_details}"}
# Create Gradio interface
interface = gr.Interface(
fn=assess_pronunciation,
inputs=[
gr.Audio(type="filepath"), # Audio input
gr.Textbox(label="Reference Text", placeholder="Enter the reference text you are pronouncing") # Reference text input
],
outputs="json",
title="Chinese Pronunciation Checker"
)
if __name__ == "__main__":
interface.launch()
|