Spaces:
Runtime error
Runtime error
| import torch | |
| from .resnet import ResNet, Bottleneck | |
| __all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269'] | |
| _url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' | |
| _model_sha256 = { | |
| name: checksum | |
| for checksum, name in [ | |
| ('528c19ca', 'resnest50'), | |
| ('22405ba7', 'resnest101'), | |
| ('75117900', 'resnest200'), | |
| ('0cc87c48', 'resnest269'), | |
| ] | |
| } | |
| def short_hash(name): | |
| if name not in _model_sha256: | |
| raise ValueError( | |
| 'Pretrained model for {name} is not available.'.format(name=name)) | |
| return _model_sha256[name][:8] | |
| resnest_model_urls = { | |
| name: _url_format.format(name, short_hash(name)) | |
| for name in _model_sha256.keys() | |
| } | |
| def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): | |
| model = ResNet(Bottleneck, [3, 4, 6, 3], | |
| radix=2, | |
| groups=1, | |
| bottleneck_width=64, | |
| deep_stem=True, | |
| stem_width=32, | |
| avg_down=True, | |
| avd=True, | |
| avd_first=False, | |
| **kwargs) | |
| if pretrained: | |
| model.load_state_dict( | |
| torch.hub.load_state_dict_from_url(resnest_model_urls['resnest50'], | |
| progress=True, | |
| check_hash=True)) | |
| return model | |
| def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): | |
| model = ResNet(Bottleneck, [3, 4, 23, 3], | |
| radix=2, | |
| groups=1, | |
| bottleneck_width=64, | |
| deep_stem=True, | |
| stem_width=64, | |
| avg_down=True, | |
| avd=True, | |
| avd_first=False, | |
| **kwargs) | |
| if pretrained: | |
| model.load_state_dict( | |
| torch.hub.load_state_dict_from_url( | |
| resnest_model_urls['resnest101'], | |
| progress=True, | |
| check_hash=True)) | |
| return model | |
| def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): | |
| model = ResNet(Bottleneck, [3, 24, 36, 3], | |
| radix=2, | |
| groups=1, | |
| bottleneck_width=64, | |
| deep_stem=True, | |
| stem_width=64, | |
| avg_down=True, | |
| avd=True, | |
| avd_first=False, | |
| **kwargs) | |
| if pretrained: | |
| model.load_state_dict( | |
| torch.hub.load_state_dict_from_url( | |
| resnest_model_urls['resnest200'], | |
| progress=True, | |
| check_hash=True)) | |
| return model | |
| def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): | |
| model = ResNet(Bottleneck, [3, 30, 48, 8], | |
| radix=2, | |
| groups=1, | |
| bottleneck_width=64, | |
| deep_stem=True, | |
| stem_width=64, | |
| avg_down=True, | |
| avd=True, | |
| avd_first=False, | |
| **kwargs) | |
| if pretrained: | |
| model.load_state_dict( | |
| torch.hub.load_state_dict_from_url( | |
| resnest_model_urls['resnest269'], | |
| progress=True, | |
| check_hash=True)) | |
| return model | |