aihuashanying commited on
Commit
c4c2f6e
·
verified ·
1 Parent(s): 239aab2

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +311 -0
app.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ from langchain_community.document_loaders import TextLoader, DirectoryLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain_openai import ChatOpenAI
8
+ from langchain.prompts import PromptTemplate
9
+ import numpy as np
10
+ import faiss
11
+ from collections import deque
12
+ from langchain_core.embeddings import Embeddings
13
+ import threading
14
+ import queue
15
+ from langchain_core.messages import HumanMessage, AIMessage
16
+ from sentence_transformers import SentenceTransformer
17
+ import pickle
18
+ import torch
19
+ import time
20
+ from tqdm import tqdm
21
+ import logging
22
+
23
+ # 设置日志
24
+ logging.basicConfig(level=logging.INFO)
25
+ logger = logging.getLogger(__name__)
26
+
27
+ # 获取环境变量
28
+ os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
29
+ if not os.environ["OPENROUTER_API_KEY"]:
30
+ raise ValueError("OPENROUTER_API_KEY 未设置")
31
+ SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
32
+ if not SILICONFLOW_API_KEY:
33
+ raise ValueError("SILICONFLOW_API_KEY 未设置")
34
+
35
+ # SiliconFlow API 配置
36
+ SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank"
37
+
38
+ # 自定义嵌入类,优化查询缓存
39
+ class SentenceTransformerEmbeddings(Embeddings):
40
+ def __init__(self, model_name="BAAI/bge-m3"):
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+ self.model = SentenceTransformer(model_name, device=device)
43
+ self.batch_size = 32 # 减小批次大小以适应低内存
44
+ self.query_cache = {}
45
+ self.cache_lock = threading.Lock()
46
+
47
+ def embed_documents(self, texts):
48
+ embeddings_list = []
49
+ batch_size = 1000 # 减小批次以降低内存压力
50
+ total_chunks = len(texts)
51
+ logger.info(f"生成嵌入,文档数: {total_chunks}")
52
+ with torch.no_grad():
53
+ for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"):
54
+ batch_texts = [text.page_content for text in texts[i:i + batch_size]]
55
+ batch_emb = self.model.encode(
56
+ batch_texts,
57
+ normalize_embeddings=True,
58
+ batch_size=self.batch_size
59
+ )
60
+ embeddings_list.append(batch_emb)
61
+ embeddings_array = np.vstack(embeddings_list)
62
+ np.save("embeddings.npy", embeddings_array)
63
+ return embeddings_array
64
+
65
+ def embed_query(self, text):
66
+ with self.cache_lock:
67
+ if text in self.query_cache:
68
+ return self.query_cache[text]
69
+ with torch.no_grad():
70
+ emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0]
71
+ with self.cache_lock:
72
+ self.query_cache[text] = emb
73
+ if len(self.query_cache) > 1000: # 限制缓存大小
74
+ self.query_cache.pop(next(iter(self.query_cache)))
75
+ return emb
76
+
77
+ # 重排序函数
78
+ def rerank_documents(query, documents, top_n=15):
79
+ try:
80
+ doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
81
+ headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"}
82
+ payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n}
83
+ response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
84
+ response.raise_for_status()
85
+ result = response.json()
86
+ reranked_docs = []
87
+ for res in result["results"]:
88
+ index = res["index"]
89
+ score = res["relevance_score"]
90
+ if index < len(documents):
91
+ text, book = doc_texts[index]
92
+ reranked_docs.append((documents[index], score))
93
+ return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
94
+ except Exception as e:
95
+ logger.error(f"重排序失败: {str(e)}")
96
+ raise
97
+
98
+ # 构建 HNSW 索引
99
+ def build_hnsw_index(knowledge_base_path, index_path):
100
+ loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"))
101
+ documents = loader.load()
102
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
103
+ texts = text_splitter.split_documents(documents)
104
+ for i, doc in enumerate(texts):
105
+ doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "")
106
+ embeddings_array = embeddings.embed_documents(texts)
107
+ dimension = embeddings_array.shape[1]
108
+ index = faiss.IndexHNSWFlat(dimension, 16)
109
+ index.hnsw.efConstruction = 100
110
+ index.add(embeddings_array)
111
+ vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings)
112
+ vector_store.index = index
113
+ vector_store.save_local(index_path)
114
+ with open("chunks.pkl", "wb") as f:
115
+ pickle.dump(texts, f)
116
+ return vector_store, texts
117
+
118
+ # 初始化嵌入模型和索引
119
+ embeddings = SentenceTransformerEmbeddings()
120
+ index_path = "faiss_index_hnsw_new"
121
+ knowledge_base_path = "knowledge_base"
122
+
123
+ if not os.path.exists(index_path):
124
+ vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
125
+ else:
126
+ vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
127
+ vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度
128
+ with open("chunks.pkl", "rb") as f:
129
+ all_documents = pickle.load(f)
130
+
131
+ # 初始化 LLM
132
+ llm = ChatOpenAI(
133
+ model="deepseek/deepseek-r1:free",
134
+ api_key=os.environ["OPENROUTER_API_KEY"],
135
+ base_url="https://openrouter.ai/api/v1",
136
+ timeout=100,
137
+ temperature=0.3,
138
+ max_tokens=130000,
139
+ streaming=True
140
+ )
141
+
142
+ # 提示词模板
143
+ prompt_template = PromptTemplate(
144
+ input_variables=["context", "question", "chat_history"],
145
+ template="""
146
+ 你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
147
+ 在回答时,请注意以下几点:
148
+ - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
149
+ - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
150
+ - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
151
+ - 引用文献:
152
+ 1. [文本 1] 摘要... 出自:书名,第X页/章节。
153
+ 2. [文本 2] 摘要... 出自:书名,第X页/章节。
154
+ (依此类推,至少10篇)
155
+ - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
156
+ - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
157
+ - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
158
+ - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
159
+ - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
160
+ - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
161
+ - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
162
+ - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
163
+ - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
164
+ - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
165
+ """
166
+ )
167
+
168
+ # 对话历史管理
169
+ class ConversationHistory:
170
+ def __init__(self, max_length=7): # 减少历史轮数
171
+ self.history = deque(maxlen=max_length)
172
+
173
+ def add_turn(self, question, answer):
174
+ self.history.append((question, answer))
175
+
176
+ def get_history(self):
177
+ return [(q, a) for q, a in self.history]
178
+
179
+ # 用户会话状态
180
+ class UserSession:
181
+ def __init__(self):
182
+ self.conversation = ConversationHistory()
183
+ self.output_queue = queue.Queue()
184
+ self.stop_flag = threading.Event()
185
+
186
+ # 生成回答
187
+ def generate_answer_thread(question, session):
188
+ stop_flag = session.stop_flag
189
+ output_queue = session.output_queue
190
+ conversation = session.conversation
191
+
192
+ stop_flag.clear()
193
+ try:
194
+ # 打印用户问题到控制台
195
+ logger.info(f"用户问题: {question}")
196
+
197
+ history_list = conversation.get_history()
198
+ history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-4:]]) # 只用最后5轮
199
+ query_with_context = f"{history_text}\n问题: {question}" if history_text else question
200
+
201
+ # 异步生成查询嵌入
202
+ embed_queue = queue.Queue()
203
+ def embed_task():
204
+ start = time.time()
205
+ emb = embeddings.embed_query(query_with_context)
206
+ embed_queue.put((emb, time.time() - start))
207
+ embed_thread = threading.Thread(target=embed_task)
208
+ embed_thread.start()
209
+ embed_thread.join()
210
+ query_embedding, embed_time = embed_queue.get()
211
+
212
+ if stop_flag.is_set():
213
+ output_queue.put("生成已停止")
214
+ return
215
+
216
+ # 初始检索
217
+ start = time.time()
218
+ docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50)
219
+ search_time = time.time() - start
220
+
221
+ if stop_flag.is_set():
222
+ output_queue.put("生成已停止")
223
+ return
224
+
225
+ # 重排序
226
+ initial_docs = [doc for doc, _ in docs_with_scores]
227
+ start = time.time()
228
+ reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs)
229
+ rerank_time = time.time() - start
230
+ final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
231
+
232
+ # 打印重排序结果到控制台
233
+ logger.info("重排序结果(最终保留的片段及其得分):")
234
+ for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1):
235
+ logger.info(f"片段 {i}:")
236
+ logger.info(f" 内容: {doc.page_content[:100]}...")
237
+ logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}")
238
+ logger.info(f" 得分: {score:.4f}")
239
+
240
+ context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)])
241
+ prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
242
+
243
+ # 将时间信息加入回答开头
244
+ timing_info = (
245
+ f"处理时间统计:\n"
246
+ f"- 嵌入时间: {embed_time:.2f} 秒\n"
247
+ f"- 检索时间: {search_time:.2f} 秒\n"
248
+ f"- 重排序时间: {rerank_time:.2f} 秒\n\n"
249
+ )
250
+
251
+ answer = timing_info
252
+ output_queue.put(answer) # 先显示时间信息
253
+
254
+ # LLM 生成回答
255
+ start = time.time()
256
+ for chunk in llm.stream([HumanMessage(content=prompt)]):
257
+ if stop_flag.is_set():
258
+ output_queue.put(answer + "\n(生成已停止)")
259
+ return
260
+ answer += chunk.content
261
+ output_queue.put(answer)
262
+ llm_time = time.time() - start
263
+ answer += f"\n\n生成耗时: {llm_time:.2f} 秒"
264
+ output_queue.put(answer)
265
+
266
+ conversation.add_turn(question, answer)
267
+ output_queue.put(answer)
268
+
269
+ except Exception as e:
270
+ output_queue.put(f"Error: {str(e)}")
271
+
272
+ # Gradio 接口
273
+ def answer_question(question, session_state):
274
+ if session_state is None:
275
+ session_state = UserSession()
276
+
277
+ thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
278
+ thread.start()
279
+
280
+ while thread.is_alive() or not session_state.output_queue.empty():
281
+ try:
282
+ output = session_state.output_queue.get(timeout=0.1)
283
+ yield output, session_state
284
+ except queue.Empty:
285
+ continue
286
+
287
+ def stop_generation(session_state):
288
+ if session_state:
289
+ session_state.stop_flag.set()
290
+ return "生成已停止"
291
+
292
+ def clear_conversation():
293
+ return "对话已清空", UserSession()
294
+
295
+ # Gradio 界面
296
+ with gr.Blocks(title="AI李敖助手") as interface:
297
+ gr.Markdown("### AI李敖助手")
298
+ gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近7轮对话,输入问题以获取李敖风格的回答。")
299
+ session_state = gr.State(value=None)
300
+ question_input = gr.Textbox(label="问题")
301
+ submit_button = gr.Button("提交")
302
+ clear_button = gr.Button("新建对话")
303
+ stop_button = gr.Button("停止")
304
+ output_text = gr.Textbox(label="回答", interactive=False)
305
+
306
+ submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
307
+ clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
308
+ stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
309
+
310
+ if __name__ == "__main__":
311
+ interface.launch(share=True)