aihuashanying commited on
Commit
592acab
·
verified ·
1 Parent(s): 3629bbf

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -1,35 +1,36 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ faiss_index_hnsw_new/index.faiss filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,14 +1,8 @@
1
- ---
2
- title: Aileeao Test
3
- emoji: 🐨
4
- colorFrom: red
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.20.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: ai李敖测试服
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: aileeao_test
3
+ app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 5.20.0
6
+ ---
7
+
8
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ from langchain_community.document_loaders import TextLoader, DirectoryLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain_openai import ChatOpenAI
8
+ from langchain.prompts import PromptTemplate
9
+ import numpy as np
10
+ import faiss
11
+ from collections import deque
12
+ from langchain_core.embeddings import Embeddings
13
+ import threading
14
+ import queue
15
+ from langchain_core.messages import HumanMessage, AIMessage
16
+ from sentence_transformers import SentenceTransformer
17
+ import pickle
18
+ import torch
19
+ from langchain_core.documents import Document
20
+ import time
21
+ from tqdm import tqdm
22
+
23
+ # 获取环境变量
24
+ os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
25
+ if not os.environ["OPENROUTER_API_KEY"]:
26
+ raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
27
+ SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
28
+ if not SILICONFLOW_API_KEY:
29
+ raise ValueError("SILICONFLOW_API_KEY 未设置,请在 Hugging Face Spaces 的 Settings > Secrets 中添加 SILICONFLOW_API_KEY")
30
+
31
+ # SiliconFlow API 配置
32
+ SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" # 需根据实际文档确认
33
+
34
+ # 自定义 APIEmbeddings 类(使用 Hugging Face API 调用 BAAI/bge-m3)
35
+ class APIEmbeddings(Embeddings):
36
+ def __init__(self, model_name="BAAI/bge-m3"):
37
+ self.model_name = model_name
38
+ self.api_key = os.getenv("HUGGINGFACE_API_KEY")
39
+ if not self.api_key:
40
+ raise ValueError("HUGGINGFACE_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
41
+
42
+ def embed_documents(self, texts):
43
+ embeddings = []
44
+ batch_size = 1000 # 根据需要调整批次大小
45
+
46
+ for i in tqdm(range(0, len(texts), batch_size), desc="生成嵌入进度"):
47
+ batch_texts = texts[i:i + batch_size]
48
+ batch_embeddings = self._request_embeddings(batch_texts)
49
+ embeddings.extend(batch_embeddings)
50
+
51
+ return embeddings
52
+
53
+ def embed_query(self, text):
54
+ query_embeddings = self._request_embeddings([text])
55
+ return query_embeddings[0]
56
+
57
+ def _request_embeddings(self, texts):
58
+ headers = {
59
+ "Authorization": f"Bearer {self.api_key}",
60
+ "Content-Type": "application/json"
61
+ }
62
+ payload = {
63
+ "inputs": texts,
64
+ "model": self.model_name
65
+ }
66
+
67
+ response = requests.post("https://api-inference.huggingface.co/models/BAAI/bge-m3", headers=headers, json=payload)
68
+ response.raise_for_status()
69
+
70
+ return response.json()[0]["embedding"]
71
+
72
+ # 重排序函数,使用 SiliconFlow API 调用 BAAI/bge-reranker-v2-m3
73
+ def rerank_documents(query, documents, top_n=15):
74
+ try:
75
+ if not documents or not query:
76
+ raise ValueError("查询或文档列表为空")
77
+
78
+ # 提取文档内容和元数据,限制长度为 2048 字符
79
+ doc_texts = [(doc.page_content[:2048].replace("\n", " ").strip(), doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
80
+ print(f"Query: {query[:100]}... (长度: {len(query)})")
81
+ print(f"文档数量 (前50个): {len(doc_texts)}")
82
+ for i, (doc, book) in enumerate(doc_texts[:5]): # 仅打印前5个用于调试
83
+ print(f" Doc {i}: {doc[:100]}... (来源: {book})")
84
+
85
+ # 构造 SiliconFlow API 请求
86
+ headers = {
87
+ "Authorization": f"Bearer {SILICONFLOW_API_KEY}",
88
+ "Content-Type": "application/json"
89
+ }
90
+ payload = {
91
+ "model": "BAAI/bge-reranker-v2-m3",
92
+ "query": query,
93
+ "documents": [text for text, _ in doc_texts],
94
+ "top_n": top_n
95
+ }
96
+
97
+ start_time = time.time()
98
+ response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
99
+ response.raise_for_status() # 检查请求是否成功
100
+ rerank_time = time.time() - start_time
101
+ print(f"重排序耗时: {rerank_time:.2f} 秒")
102
+
103
+ # 解析 SiliconFlow API 响应
104
+ result = response.json()
105
+ print(f"SiliconFlow API 响应: {result}")
106
+
107
+ # 验证返回结果
108
+ if "results" not in result or not isinstance(result["results"], list):
109
+ raise ValueError(f"SiliconFlow API 返回格式错误: {result}")
110
+
111
+ # 构建重排序结果,修正键名为 "relevance_score"
112
+ reranked_docs = []
113
+ for res in result["results"]:
114
+ if "index" not in res or "relevance_score" not in res:
115
+ raise ValueError(f"SiliconFlow API 返回的条目格式错误: {res}")
116
+ index = res["index"]
117
+ score = res["relevance_score"]
118
+ if index < len(documents):
119
+ text, book = doc_texts[index]
120
+ reranked_docs.append((Document(page_content=text, metadata={"book": book}), score))
121
+
122
+ # 按得分排序并截取 top_n
123
+ reranked_docs = sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
124
+ print(f"重排序结果 (数量: {len(reranked_docs)}):")
125
+ for i, (doc, score) in enumerate(reranked_docs):
126
+ print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
127
+
128
+ return reranked_docs
129
+ except Exception as e:
130
+ error_msg = str(e)
131
+ print(f"错误详情: {error_msg}")
132
+ raise Exception(f"重排序失败: {error_msg}")
133
+
134
+ # 构建 HNSW 索引
135
+ def build_hnsw_index(knowledge_base_path, index_path):
136
+ print("开始加载文档...")
137
+ start_time = time.time()
138
+ loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
139
+ documents = loader.load()
140
+ load_time = time.time() - start_time
141
+ print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
142
+
143
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
144
+ if not os.path.exists("chunks.pkl"):
145
+ print("开始分片...")
146
+ start_time = time.time()
147
+ texts = []
148
+ total_chars = 0
149
+ total_bytes = 0
150
+ for i, doc in enumerate(documents):
151
+ doc_chunks = text_splitter.split_documents([doc])
152
+ for chunk in doc_chunks:
153
+ content = chunk.page_content
154
+ file_path = chunk.metadata.get("source", "")
155
+ book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
156
+ texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
157
+ total_chars += len(content)
158
+ total_bytes += len(content.encode('utf-8'))
159
+ if i < 5:
160
+ print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
161
+ if (i + 1) % 10 == 0:
162
+ print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
163
+ with open("chunks.pkl", "wb") as f:
164
+ pickle.dump(texts, f)
165
+ split_time = time.time() - start_time
166
+ print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
167
+ else:
168
+ with open("chunks.pkl", "rb") as f:
169
+ texts = pickle.load(f)
170
+ print(f"加载已有分片,共 {len(texts)} 个 chunk")
171
+
172
+ if not os.path.exists("embeddings.npy"):
173
+ print("开始生成嵌入(使用 BAAI/bge-m3 API,分批处理)...")
174
+ embeddings = APIEmbeddings()
175
+ texts_content = [text.page_content for text in texts]
176
+ embeddings_array = embeddings.embed_documents(texts_content)
177
+ if os.path.exists("embeddings_temp.npy"):
178
+ os.remove("embeddings_temp.npy")
179
+ print(f"嵌入生成完成,维度: {embeddings_array.shape}")
180
+ else:
181
+ embeddings_array = np.load("embeddings.npy")
182
+ print(f"加载已有嵌入,维度: {embeddings_array.shape}")
183
+
184
+ dimension = embeddings_array.shape[1]
185
+ index = faiss.IndexHNSWFlat(dimension, 16)
186
+ index.hnsw.efConstruction = 100
187
+ print("开始构建 HNSW 索引...")
188
+
189
+ batch_size = 5000
190
+ total_vectors = embeddings_array.shape[0]
191
+ for i in range(0, total_vectors, batch_size):
192
+ batch = embeddings_array[i:i + batch_size]
193
+ index.add(batch)
194
+ print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
195
+
196
+ text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
197
+ vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
198
+ vector_store.index = index
199
+ vector_store.docstore._dict.clear()
200
+ vector_store.index_to_docstore_id.clear()
201
+
202
+ for i, text in enumerate(texts):
203
+ doc_id = str(i)
204
+ vector_store.docstore._dict[doc_id] = text
205
+ vector_store.index_to_docstore_id[i] = doc_id
206
+
207
+ print("开始保存索引...")
208
+ vector_store.save_local(index_path)
209
+ print(f"HNSW 索引已生成并保存到 '{index_path}'")
210
+ return vector_store, texts
211
+
212
+ # 初始化嵌入模型
213
+ embeddings = APIEmbeddings(model_name="BAAI/bge-m3")
214
+ print("已初始化 BAAI/bge-m3 嵌入模型,通过 API 调用")
215
+
216
+ # 加载或生成索引
217
+ index_path = "faiss_index_hnsw_new"
218
+ knowledge_base_path = "knowledge_base"
219
+
220
+ if not os.path.exists(index_path):
221
+ if os.path.exists(knowledge_base_path):
222
+ print("检测到 knowledge_base,正在生成 HNSW 索引...")
223
+ vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
224
+ else:
225
+ raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
226
+ else:
227
+ vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
228
+ vector_store.index.hnsw.efSearch = 300
229
+ print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300")
230
+ with open("chunks.pkl", "rb") as f:
231
+ all_documents = pickle.load(f)
232
+ book_counts = {}
233
+ for doc in all_documents:
234
+ book = doc.metadata.get("book", "未知来源")
235
+ book_counts[book] = book_counts.get(book, 0) + 1
236
+ print(f"all_documents 书籍分布: {book_counts}")
237
+
238
+ # 初始化 ChatOpenAI
239
+ llm = ChatOpenAI(
240
+ model="deepseek/deepseek-r1:free",
241
+ api_key=os.environ["OPENROUTER_API_KEY"],
242
+ base_url="https://openrouter.ai/api/v1",
243
+ timeout=60,
244
+ temperature=0.3,
245
+ max_tokens=130000,
246
+ streaming=True
247
+ )
248
+
249
+ # 定义提示词模板
250
+ prompt_template = PromptTemplate(
251
+ input_variables=["context", "question", "chat_history"],
252
+ template="""
253
+ 你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
254
+ 在回答时,请注意以下几点:
255
+ - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
256
+ - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
257
+ - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
258
+ - 引用文献:
259
+ 1. [文本 1] 摘要... 出自:书名,第X页/章节。
260
+ 2. [文本 2] 摘要... 出自:书名,第X页/章节。
261
+ (依此类推,至少10篇)
262
+ - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
263
+ - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
264
+ - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
265
+ - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
266
+ - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
267
+ - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
268
+ - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
269
+ - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
270
+ - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
271
+ - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
272
+ """
273
+ )
274
+
275
+ # 对话历史管理类
276
+ class ConversationHistory:
277
+ def __init__(self, max_length=10):
278
+ self.history = deque(maxlen=max_length)
279
+
280
+ def add_turn(self, question, answer):
281
+ self.history.append((question, answer))
282
+
283
+ def get_history(self):
284
+ return [(turn[0], turn[1]) for turn in self.history]
285
+
286
+ def clear(self):
287
+ self.history.clear()
288
+
289
+ # 用户会话状态类
290
+ class UserSession:
291
+ def __init__(self):
292
+ self.conversation = ConversationHistory()
293
+ self.output_queue = queue.Queue()
294
+ self.stop_flag = threading.Event()
295
+
296
+ # 生成回答的线程函数
297
+ def generate_answer_thread(question, session):
298
+ stop_flag = session.stop_flag
299
+ output_queue = session.output_queue
300
+ conversation = session.conversation
301
+
302
+ stop_flag.clear()
303
+ try:
304
+ history_list = conversation.get_history()
305
+ history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
306
+ query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
307
+
308
+ # 1. 使用 BAAI/bge-m3 API 生成查询嵌入
309
+ start_time = time.time()
310
+ embeddings = APIEmbeddings()
311
+ query_embedding = embeddings.embed_query(query_with_context)
312
+ embed_time = time.time() - start_time
313
+ output_queue.put(f"嵌入耗时 (BAAI/bge-m3 API): {embed_time:.2f} 秒\n")
314
+
315
+ if stop_flag.is_set():
316
+ output_queue.put("生成已停止")
317
+ return
318
+
319
+ # 2. 使用 FAISS HNSW 索引进行初始检索
320
+ start_time = time.time()
321
+ initial_docs_with_scores = vector_store.similarity_search_with_score(query_with_context, k=50)
322
+ search_time = time.time() - start_time
323
+ output_queue.put(f"初始检索数量: {len(initial_docs_with_scores)}\n检索耗时: {search_time:.2f} 秒\n")
324
+
325
+ if stop_flag.is_set():
326
+ output_queue.put("生成已停止")
327
+ return
328
+
329
+ initial_docs = [doc for doc, _ in initial_docs_with_scores]
330
+
331
+ # 3. 使用 SiliconFlow 的 BAAI/bge-reranker-v2-m3 进行重排序
332
+ start_time = time.time()
333
+ reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs, top_n=15)
334
+ rerank_time = time.time() - start_time
335
+ output_queue.put(f"重排序耗时 (BAAI/bge-reranker-v2-m3): {rerank_time:.2f} 秒\n")
336
+
337
+ if stop_flag.is_set():
338
+ output_queue.put("生成已停止")
339
+ return
340
+
341
+ # 调整 final_docs 数量,取前 10 篇
342
+ final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
343
+ if len(final_docs) < 10:
344
+ output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
345
+
346
+ # 构造 context,包含文本内容和书目信息
347
+ context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
348
+ chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
349
+ for i, (q, a) in enumerate(history_list)]
350
+ prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
351
+
352
+ # 4. 使用 LLM 生成回答
353
+ answer = ""
354
+ start_time = time.time()
355
+ for chunk in llm.stream([HumanMessage(content=prompt)]):
356
+ if stop_flag.is_set():
357
+ output_queue.put(answer + "\n\n(生成已停止)")
358
+ return
359
+ answer += chunk.content
360
+ output_queue.put(answer)
361
+ llm_time = time.time() - start_time
362
+ output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
363
+
364
+ conversation.add_turn(question, answer)
365
+ output_queue.put(answer)
366
+
367
+ except Exception as e:
368
+ output_queue.put(f"Error: {str(e)}")
369
+
370
+ # Gradio 接口函数
371
+ def answer_question(question, session_state):
372
+ if session_state is None:
373
+ session_state = UserSession()
374
+
375
+ thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
376
+ thread.start()
377
+
378
+ while thread.is_alive() or not session_state.output_queue.empty():
379
+ try:
380
+ output = session_state.output_queue.get(timeout=0.1)
381
+ yield output, session_state
382
+ except queue.Empty:
383
+ continue
384
+
385
+ while not session_state.output_queue.empty():
386
+ yield session_state.output_queue.get(), session_state
387
+
388
+ def stop_generation(session_state):
389
+ if session_state is not None:
390
+ session_state.stop_flag.set()
391
+ return "生成已停止,正在中止..."
392
+
393
+ def clear_conversation():
394
+ return "对话历史已清空,请开始新的对话。", UserSession()
395
+
396
+ # 创建 Gradio 界面
397
+ with gr.Blocks(title="AI李敖助手") as interface:
398
+ gr.Markdown("### AI李敖助手")
399
+ gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
400
+
401
+ session_state = gr.State(value=None)
402
+
403
+ with gr.Row():
404
+ with gr.Column(scale=3):
405
+ question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
406
+ submit_button = gr.Button("提交")
407
+ with gr.Column(scale=1):
408
+ clear_button = gr.Button("新建对话")
409
+ stop_button = gr.Button("停止生成")
410
+
411
+ output_text = gr.Textbox(label="回答", interactive=False)
412
+
413
+ submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
414
+ clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
415
+ stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
416
+
417
+ # 启动应用
418
+ if __name__ == "__main__":
419
+ interface.launch(share=True)
faiss_index_hnsw_new/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4149ca48ac3eb082e529c318ecec16fa8e512a38976efbfdf2d1a8980be4c69
3
+ size 193971462
faiss_index_hnsw_new/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fd2179d6ec9a9537de8812fbe217136841905214c29d91cef8a9c76a96b2a1a
3
+ size 111802375
requirements.txt ADDED
Binary file (3.92 kB). View file