Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,419 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_community.vectorstores import FAISS
|
7 |
-
from langchain_openai import ChatOpenAI
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
import numpy as np
|
10 |
-
import faiss
|
11 |
-
from collections import deque
|
12 |
-
from langchain_core.embeddings import Embeddings
|
13 |
-
import threading
|
14 |
-
import queue
|
15 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
16 |
-
from sentence_transformers import SentenceTransformer
|
17 |
-
import pickle
|
18 |
-
import torch
|
19 |
-
from langchain_core.documents import Document
|
20 |
-
import time
|
21 |
-
from tqdm import tqdm
|
22 |
-
|
23 |
-
# 获取环境变量
|
24 |
-
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
|
25 |
-
if not os.environ["OPENROUTER_API_KEY"]:
|
26 |
-
raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
|
27 |
-
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
|
28 |
-
if not SILICONFLOW_API_KEY:
|
29 |
-
raise ValueError("SILICONFLOW_API_KEY 未设置,请在 Hugging Face Spaces 的 Settings > Secrets 中添加 SILICONFLOW_API_KEY")
|
30 |
-
|
31 |
-
# SiliconFlow API 配置
|
32 |
-
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" # 需根据实际文档确认
|
33 |
-
|
34 |
-
# 自定义 APIEmbeddings 类(使用 Hugging Face API 调用 BAAI/bge-m3)
|
35 |
-
class APIEmbeddings(Embeddings):
|
36 |
-
def __init__(self, model_name="BAAI/bge-m3"):
|
37 |
-
self.model_name = model_name
|
38 |
-
self.api_key = os.getenv("HUGGINGFACE_API_KEY")
|
39 |
-
if not self.api_key:
|
40 |
-
raise ValueError("HUGGINGFACE_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
|
41 |
-
|
42 |
-
def embed_documents(self, texts):
|
43 |
-
embeddings = []
|
44 |
-
batch_size = 1000 # 根据需要调整批次大小
|
45 |
-
|
46 |
-
for i in tqdm(range(0, len(texts), batch_size), desc="生成嵌入进度"):
|
47 |
-
batch_texts = texts[i:i + batch_size]
|
48 |
-
batch_embeddings = self._request_embeddings(batch_texts)
|
49 |
-
embeddings.extend(batch_embeddings)
|
50 |
-
|
51 |
-
return embeddings
|
52 |
-
|
53 |
-
def embed_query(self, text):
|
54 |
-
query_embeddings = self._request_embeddings([text])
|
55 |
-
return query_embeddings[0]
|
56 |
-
|
57 |
-
def _request_embeddings(self, texts):
|
58 |
-
headers = {
|
59 |
-
"Authorization": f"Bearer {self.api_key}",
|
60 |
-
"Content-Type": "application/json"
|
61 |
-
}
|
62 |
-
payload = {
|
63 |
-
"inputs": texts,
|
64 |
-
"model": self.model_name
|
65 |
-
}
|
66 |
-
|
67 |
-
response = requests.post("https://api-inference.huggingface.co/models/BAAI/bge-m3", headers=headers, json=payload)
|
68 |
-
response.raise_for_status()
|
69 |
-
|
70 |
-
return response.json()[0]["embedding"]
|
71 |
-
|
72 |
-
# 重排序函数,使用 SiliconFlow API 调用 BAAI/bge-reranker-v2-m3
|
73 |
-
def rerank_documents(query, documents, top_n=15):
|
74 |
-
try:
|
75 |
-
if not documents or not query:
|
76 |
-
raise ValueError("查询或文档列表为空")
|
77 |
-
|
78 |
-
# 提取文档内容和元数据,限制长度为 2048 字符
|
79 |
-
doc_texts = [(doc.page_content[:2048].replace("\n", " ").strip(), doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
|
80 |
-
print(f"Query: {query[:100]}... (长度: {len(query)})")
|
81 |
-
print(f"文档数量 (前50个): {len(doc_texts)}")
|
82 |
-
for i, (doc, book) in enumerate(doc_texts[:5]): # 仅打印前5个用于调试
|
83 |
-
print(f" Doc {i}: {doc[:100]}... (来源: {book})")
|
84 |
-
|
85 |
-
# 构造 SiliconFlow API 请求
|
86 |
-
headers = {
|
87 |
-
"Authorization": f"Bearer {SILICONFLOW_API_KEY}",
|
88 |
-
"Content-Type": "application/json"
|
89 |
-
}
|
90 |
-
payload = {
|
91 |
-
"model": "BAAI/bge-reranker-v2-m3",
|
92 |
-
"query": query,
|
93 |
-
"documents": [text for text, _ in doc_texts],
|
94 |
-
"top_n": top_n
|
95 |
-
}
|
96 |
-
|
97 |
-
start_time = time.time()
|
98 |
-
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
|
99 |
-
response.raise_for_status() # 检查请求是否成功
|
100 |
-
rerank_time = time.time() - start_time
|
101 |
-
print(f"重排序耗时: {rerank_time:.2f} 秒")
|
102 |
-
|
103 |
-
# 解析 SiliconFlow API 响应
|
104 |
-
result = response.json()
|
105 |
-
print(f"SiliconFlow API 响应: {result}")
|
106 |
-
|
107 |
-
# 验证返回结果
|
108 |
-
if "results" not in result or not isinstance(result["results"], list):
|
109 |
-
raise ValueError(f"SiliconFlow API 返回格式错误: {result}")
|
110 |
-
|
111 |
-
# 构建重排序结果,修正键名为 "relevance_score"
|
112 |
-
reranked_docs = []
|
113 |
-
for res in result["results"]:
|
114 |
-
if "index" not in res or "relevance_score" not in res:
|
115 |
-
raise ValueError(f"SiliconFlow API 返回的条目格式错误: {res}")
|
116 |
-
index = res["index"]
|
117 |
-
score = res["relevance_score"]
|
118 |
-
if index < len(documents):
|
119 |
-
text, book = doc_texts[index]
|
120 |
-
reranked_docs.append((Document(page_content=text, metadata={"book": book}), score))
|
121 |
-
|
122 |
-
# 按得分排序并截取 top_n
|
123 |
-
reranked_docs = sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
|
124 |
-
print(f"重排序结果 (数量: {len(reranked_docs)}):")
|
125 |
-
for i, (doc, score) in enumerate(reranked_docs):
|
126 |
-
print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
|
127 |
-
|
128 |
-
return reranked_docs
|
129 |
-
except Exception as e:
|
130 |
-
error_msg = str(e)
|
131 |
-
print(f"错误详情: {error_msg}")
|
132 |
-
raise Exception(f"重排序失败: {error_msg}")
|
133 |
-
|
134 |
-
# 构建 HNSW 索引
|
135 |
-
def build_hnsw_index(knowledge_base_path, index_path):
|
136 |
-
print("开始加载文档...")
|
137 |
-
start_time = time.time()
|
138 |
-
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
|
139 |
-
documents = loader.load()
|
140 |
-
load_time = time.time() - start_time
|
141 |
-
print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
|
142 |
-
|
143 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
144 |
-
if not os.path.exists("chunks.pkl"):
|
145 |
-
print("开始分片...")
|
146 |
-
start_time = time.time()
|
147 |
-
texts = []
|
148 |
-
total_chars = 0
|
149 |
-
total_bytes = 0
|
150 |
-
for i, doc in enumerate(documents):
|
151 |
-
doc_chunks = text_splitter.split_documents([doc])
|
152 |
-
for chunk in doc_chunks:
|
153 |
-
content = chunk.page_content
|
154 |
-
file_path = chunk.metadata.get("source", "")
|
155 |
-
book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
|
156 |
-
texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
|
157 |
-
total_chars += len(content)
|
158 |
-
total_bytes += len(content.encode('utf-8'))
|
159 |
-
if i < 5:
|
160 |
-
print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
|
161 |
-
if (i + 1) % 10 == 0:
|
162 |
-
print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
|
163 |
-
with open("chunks.pkl", "wb") as f:
|
164 |
-
pickle.dump(texts, f)
|
165 |
-
split_time = time.time() - start_time
|
166 |
-
print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
|
167 |
-
else:
|
168 |
-
with open("chunks.pkl", "rb") as f:
|
169 |
-
texts = pickle.load(f)
|
170 |
-
print(f"加载已有分片,共 {len(texts)} 个 chunk")
|
171 |
-
|
172 |
-
if not os.path.exists("embeddings.npy"):
|
173 |
-
print("开始生成嵌入(使用 BAAI/bge-m3 API,分批处理)...")
|
174 |
-
embeddings = APIEmbeddings()
|
175 |
-
texts_content = [text.page_content for text in texts]
|
176 |
-
embeddings_array = embeddings.embed_documents(texts_content)
|
177 |
-
if os.path.exists("embeddings_temp.npy"):
|
178 |
-
os.remove("embeddings_temp.npy")
|
179 |
-
print(f"嵌入生成完成,维度: {embeddings_array.shape}")
|
180 |
-
else:
|
181 |
-
embeddings_array = np.load("embeddings.npy")
|
182 |
-
print(f"加载已有嵌入,维度: {embeddings_array.shape}")
|
183 |
-
|
184 |
-
dimension = embeddings_array.shape[1]
|
185 |
-
index = faiss.IndexHNSWFlat(dimension, 16)
|
186 |
-
index.hnsw.efConstruction = 100
|
187 |
-
print("开始构建 HNSW 索引...")
|
188 |
-
|
189 |
-
batch_size = 5000
|
190 |
-
total_vectors = embeddings_array.shape[0]
|
191 |
-
for i in range(0, total_vectors, batch_size):
|
192 |
-
batch = embeddings_array[i:i + batch_size]
|
193 |
-
index.add(batch)
|
194 |
-
print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
|
195 |
-
|
196 |
-
text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
|
197 |
-
vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
|
198 |
-
vector_store.index = index
|
199 |
-
vector_store.docstore._dict.clear()
|
200 |
-
vector_store.index_to_docstore_id.clear()
|
201 |
-
|
202 |
-
for i, text in enumerate(texts):
|
203 |
-
doc_id = str(i)
|
204 |
-
vector_store.docstore._dict[doc_id] = text
|
205 |
-
vector_store.index_to_docstore_id[i] = doc_id
|
206 |
-
|
207 |
-
print("开始保存索引...")
|
208 |
-
vector_store.save_local(index_path)
|
209 |
-
print(f"HNSW 索引已生成并保存到 '{index_path}'")
|
210 |
-
return vector_store, texts
|
211 |
-
|
212 |
-
# 初始化嵌入模型
|
213 |
-
embeddings = APIEmbeddings(model_name="BAAI/bge-m3")
|
214 |
-
print("已初始化 BAAI/bge-m3 嵌入模型,通过 API 调用")
|
215 |
-
|
216 |
-
# 加载或生成索引
|
217 |
-
index_path = "faiss_index_hnsw_new"
|
218 |
-
knowledge_base_path = "knowledge_base"
|
219 |
-
|
220 |
-
if not os.path.exists(index_path):
|
221 |
-
if os.path.exists(knowledge_base_path):
|
222 |
-
print("检测到 knowledge_base,正在生成 HNSW 索引...")
|
223 |
-
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
|
224 |
-
else:
|
225 |
-
raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
|
226 |
-
else:
|
227 |
-
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
|
228 |
-
vector_store.index.hnsw.efSearch = 300
|
229 |
-
print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300")
|
230 |
-
with open("chunks.pkl", "rb") as f:
|
231 |
-
all_documents = pickle.load(f)
|
232 |
-
book_counts = {}
|
233 |
-
for doc in all_documents:
|
234 |
-
book = doc.metadata.get("book", "未知来源")
|
235 |
-
book_counts[book] = book_counts.get(book, 0) + 1
|
236 |
-
print(f"all_documents 书籍分布: {book_counts}")
|
237 |
-
|
238 |
-
# 初始化 ChatOpenAI
|
239 |
-
llm = ChatOpenAI(
|
240 |
-
model="deepseek/deepseek-r1:free",
|
241 |
-
api_key=os.environ["OPENROUTER_API_KEY"],
|
242 |
-
base_url="https://openrouter.ai/api/v1",
|
243 |
-
timeout=60,
|
244 |
-
temperature=0.3,
|
245 |
-
max_tokens=130000,
|
246 |
-
streaming=True
|
247 |
-
)
|
248 |
-
|
249 |
-
# 定义提示词模板
|
250 |
-
prompt_template = PromptTemplate(
|
251 |
-
input_variables=["context", "question", "chat_history"],
|
252 |
-
template="""
|
253 |
-
你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
|
254 |
-
在回答时,请注意以下几点:
|
255 |
-
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
|
256 |
-
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
|
257 |
-
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
|
258 |
-
- 引用文献:
|
259 |
-
1. [文本 1] 摘要... 出自:书名,第X页/章节。
|
260 |
-
2. [文本 2] 摘要... 出自:书名,第X页/章节。
|
261 |
-
(依此类推,至少10篇)
|
262 |
-
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
|
263 |
-
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
|
264 |
-
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
|
265 |
-
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
|
266 |
-
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
|
267 |
-
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
|
268 |
-
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
|
269 |
-
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
|
270 |
-
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
|
271 |
-
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
|
272 |
-
"""
|
273 |
-
)
|
274 |
-
|
275 |
-
# 对话历史管理类
|
276 |
-
class ConversationHistory:
|
277 |
-
def __init__(self, max_length=10):
|
278 |
-
self.history = deque(maxlen=max_length)
|
279 |
-
|
280 |
-
def add_turn(self, question, answer):
|
281 |
-
self.history.append((question, answer))
|
282 |
-
|
283 |
-
def get_history(self):
|
284 |
-
return [(turn[0], turn[1]) for turn in self.history]
|
285 |
-
|
286 |
-
def clear(self):
|
287 |
-
self.history.clear()
|
288 |
-
|
289 |
-
# 用户会话状态类
|
290 |
-
class UserSession:
|
291 |
-
def __init__(self):
|
292 |
-
self.conversation = ConversationHistory()
|
293 |
-
self.output_queue = queue.Queue()
|
294 |
-
self.stop_flag = threading.Event()
|
295 |
-
|
296 |
-
# 生成回答的线程函数
|
297 |
-
def generate_answer_thread(question, session):
|
298 |
-
stop_flag = session.stop_flag
|
299 |
-
output_queue = session.output_queue
|
300 |
-
conversation = session.conversation
|
301 |
-
|
302 |
-
stop_flag.clear()
|
303 |
-
try:
|
304 |
-
history_list = conversation.get_history()
|
305 |
-
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
|
306 |
-
query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
|
307 |
-
|
308 |
-
# 1. 使用 BAAI/bge-m3 API 生成查询嵌入
|
309 |
-
start_time = time.time()
|
310 |
-
embeddings = APIEmbeddings()
|
311 |
-
query_embedding = embeddings.embed_query(query_with_context)
|
312 |
-
embed_time = time.time() - start_time
|
313 |
-
output_queue.put(f"嵌入耗时 (BAAI/bge-m3 API): {embed_time:.2f} 秒\n")
|
314 |
-
|
315 |
-
if stop_flag.is_set():
|
316 |
-
output_queue.put("生成已停止")
|
317 |
-
return
|
318 |
-
|
319 |
-
# 2. 使用 FAISS HNSW 索引进行初始检索
|
320 |
-
start_time = time.time()
|
321 |
-
initial_docs_with_scores = vector_store.similarity_search_with_score(query_with_context, k=50)
|
322 |
-
search_time = time.time() - start_time
|
323 |
-
output_queue.put(f"初始检索数量: {len(initial_docs_with_scores)}\n检索耗时: {search_time:.2f} 秒\n")
|
324 |
-
|
325 |
-
if stop_flag.is_set():
|
326 |
-
output_queue.put("生成已停止")
|
327 |
-
return
|
328 |
-
|
329 |
-
initial_docs = [doc for doc, _ in initial_docs_with_scores]
|
330 |
-
|
331 |
-
# 3. 使用 SiliconFlow 的 BAAI/bge-reranker-v2-m3 进行重排序
|
332 |
-
start_time = time.time()
|
333 |
-
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs, top_n=15)
|
334 |
-
rerank_time = time.time() - start_time
|
335 |
-
output_queue.put(f"重排序耗时 (BAAI/bge-reranker-v2-m3): {rerank_time:.2f} 秒\n")
|
336 |
-
|
337 |
-
if stop_flag.is_set():
|
338 |
-
output_queue.put("生成已停止")
|
339 |
-
return
|
340 |
-
|
341 |
-
# 调整 final_docs 数量,取前 10 篇
|
342 |
-
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
|
343 |
-
if len(final_docs) < 10:
|
344 |
-
output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
|
345 |
-
|
346 |
-
# 构造 context,包含文本内容和书目信息
|
347 |
-
context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
|
348 |
-
chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
|
349 |
-
for i, (q, a) in enumerate(history_list)]
|
350 |
-
prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
|
351 |
-
|
352 |
-
# 4. 使用 LLM 生成回答
|
353 |
-
answer = ""
|
354 |
-
start_time = time.time()
|
355 |
-
for chunk in llm.stream([HumanMessage(content=prompt)]):
|
356 |
-
if stop_flag.is_set():
|
357 |
-
output_queue.put(answer + "\n\n(生成已停止)")
|
358 |
-
return
|
359 |
-
answer += chunk.content
|
360 |
-
output_queue.put(answer)
|
361 |
-
llm_time = time.time() - start_time
|
362 |
-
output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
|
363 |
-
|
364 |
-
conversation.add_turn(question, answer)
|
365 |
-
output_queue.put(answer)
|
366 |
-
|
367 |
-
except Exception as e:
|
368 |
-
output_queue.put(f"Error: {str(e)}")
|
369 |
-
|
370 |
-
# Gradio 接口函数
|
371 |
-
def answer_question(question, session_state):
|
372 |
-
if session_state is None:
|
373 |
-
session_state = UserSession()
|
374 |
-
|
375 |
-
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
|
376 |
-
thread.start()
|
377 |
-
|
378 |
-
while thread.is_alive() or not session_state.output_queue.empty():
|
379 |
-
try:
|
380 |
-
output = session_state.output_queue.get(timeout=0.1)
|
381 |
-
yield output, session_state
|
382 |
-
except queue.Empty:
|
383 |
-
continue
|
384 |
-
|
385 |
-
while not session_state.output_queue.empty():
|
386 |
-
yield session_state.output_queue.get(), session_state
|
387 |
-
|
388 |
-
def stop_generation(session_state):
|
389 |
-
if session_state is not None:
|
390 |
-
session_state.stop_flag.set()
|
391 |
-
return "生成已停止,正在中止..."
|
392 |
-
|
393 |
-
def clear_conversation():
|
394 |
-
return "对话历史已清空,请开始新的对话。", UserSession()
|
395 |
-
|
396 |
-
# 创建 Gradio 界面
|
397 |
-
with gr.Blocks(title="AI李敖助手") as interface:
|
398 |
-
gr.Markdown("### AI李敖助手")
|
399 |
-
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
|
400 |
-
|
401 |
-
session_state = gr.State(value=None)
|
402 |
-
|
403 |
-
with gr.Row():
|
404 |
-
with gr.Column(scale=3):
|
405 |
-
question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
|
406 |
-
submit_button = gr.Button("提交")
|
407 |
-
with gr.Column(scale=1):
|
408 |
-
clear_button = gr.Button("新建对话")
|
409 |
-
stop_button = gr.Button("停止生成")
|
410 |
-
|
411 |
-
output_text = gr.Textbox(label="回答", interactive=False)
|
412 |
-
|
413 |
-
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
|
414 |
-
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
|
415 |
-
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
|
416 |
-
|
417 |
-
# 启动应用
|
418 |
-
if __name__ == "__main__":
|
419 |
-
interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|