aihuashanying commited on
Commit
10271b5
·
verified ·
1 Parent(s): 687e9f8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -419
app.py DELETED
@@ -1,419 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- from langchain_community.document_loaders import TextLoader, DirectoryLoader
5
- from langchain.text_splitter import RecursiveCharacterTextSplitter
6
- from langchain_community.vectorstores import FAISS
7
- from langchain_openai import ChatOpenAI
8
- from langchain.prompts import PromptTemplate
9
- import numpy as np
10
- import faiss
11
- from collections import deque
12
- from langchain_core.embeddings import Embeddings
13
- import threading
14
- import queue
15
- from langchain_core.messages import HumanMessage, AIMessage
16
- from sentence_transformers import SentenceTransformer
17
- import pickle
18
- import torch
19
- from langchain_core.documents import Document
20
- import time
21
- from tqdm import tqdm
22
-
23
- # 获取环境变量
24
- os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
25
- if not os.environ["OPENROUTER_API_KEY"]:
26
- raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
27
- SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
28
- if not SILICONFLOW_API_KEY:
29
- raise ValueError("SILICONFLOW_API_KEY 未设置,请在 Hugging Face Spaces 的 Settings > Secrets 中添加 SILICONFLOW_API_KEY")
30
-
31
- # SiliconFlow API 配置
32
- SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" # 需根据实际文档确认
33
-
34
- # 自定义 APIEmbeddings 类(使用 Hugging Face API 调用 BAAI/bge-m3)
35
- class APIEmbeddings(Embeddings):
36
- def __init__(self, model_name="BAAI/bge-m3"):
37
- self.model_name = model_name
38
- self.api_key = os.getenv("HUGGINGFACE_API_KEY")
39
- if not self.api_key:
40
- raise ValueError("HUGGINGFACE_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
41
-
42
- def embed_documents(self, texts):
43
- embeddings = []
44
- batch_size = 1000 # 根据需要调整批次大小
45
-
46
- for i in tqdm(range(0, len(texts), batch_size), desc="生成嵌入进度"):
47
- batch_texts = texts[i:i + batch_size]
48
- batch_embeddings = self._request_embeddings(batch_texts)
49
- embeddings.extend(batch_embeddings)
50
-
51
- return embeddings
52
-
53
- def embed_query(self, text):
54
- query_embeddings = self._request_embeddings([text])
55
- return query_embeddings[0]
56
-
57
- def _request_embeddings(self, texts):
58
- headers = {
59
- "Authorization": f"Bearer {self.api_key}",
60
- "Content-Type": "application/json"
61
- }
62
- payload = {
63
- "inputs": texts,
64
- "model": self.model_name
65
- }
66
-
67
- response = requests.post("https://api-inference.huggingface.co/models/BAAI/bge-m3", headers=headers, json=payload)
68
- response.raise_for_status()
69
-
70
- return response.json()[0]["embedding"]
71
-
72
- # 重排序函数,使用 SiliconFlow API 调用 BAAI/bge-reranker-v2-m3
73
- def rerank_documents(query, documents, top_n=15):
74
- try:
75
- if not documents or not query:
76
- raise ValueError("查询或文档列表为空")
77
-
78
- # 提取文档内容和元数据,限制长度为 2048 字符
79
- doc_texts = [(doc.page_content[:2048].replace("\n", " ").strip(), doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
80
- print(f"Query: {query[:100]}... (长度: {len(query)})")
81
- print(f"文档数量 (前50个): {len(doc_texts)}")
82
- for i, (doc, book) in enumerate(doc_texts[:5]): # 仅打印前5个用于调试
83
- print(f" Doc {i}: {doc[:100]}... (来源: {book})")
84
-
85
- # 构造 SiliconFlow API 请求
86
- headers = {
87
- "Authorization": f"Bearer {SILICONFLOW_API_KEY}",
88
- "Content-Type": "application/json"
89
- }
90
- payload = {
91
- "model": "BAAI/bge-reranker-v2-m3",
92
- "query": query,
93
- "documents": [text for text, _ in doc_texts],
94
- "top_n": top_n
95
- }
96
-
97
- start_time = time.time()
98
- response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
99
- response.raise_for_status() # 检查请求是否成功
100
- rerank_time = time.time() - start_time
101
- print(f"重排序耗时: {rerank_time:.2f} 秒")
102
-
103
- # 解析 SiliconFlow API 响应
104
- result = response.json()
105
- print(f"SiliconFlow API 响应: {result}")
106
-
107
- # 验证返回结果
108
- if "results" not in result or not isinstance(result["results"], list):
109
- raise ValueError(f"SiliconFlow API 返回格式错误: {result}")
110
-
111
- # 构建重排序结果,修正键名为 "relevance_score"
112
- reranked_docs = []
113
- for res in result["results"]:
114
- if "index" not in res or "relevance_score" not in res:
115
- raise ValueError(f"SiliconFlow API 返回的条目格式错误: {res}")
116
- index = res["index"]
117
- score = res["relevance_score"]
118
- if index < len(documents):
119
- text, book = doc_texts[index]
120
- reranked_docs.append((Document(page_content=text, metadata={"book": book}), score))
121
-
122
- # 按得分排序并截取 top_n
123
- reranked_docs = sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
124
- print(f"重排序结果 (数量: {len(reranked_docs)}):")
125
- for i, (doc, score) in enumerate(reranked_docs):
126
- print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
127
-
128
- return reranked_docs
129
- except Exception as e:
130
- error_msg = str(e)
131
- print(f"错误详情: {error_msg}")
132
- raise Exception(f"重排序失败: {error_msg}")
133
-
134
- # 构建 HNSW 索引
135
- def build_hnsw_index(knowledge_base_path, index_path):
136
- print("开始加载文档...")
137
- start_time = time.time()
138
- loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
139
- documents = loader.load()
140
- load_time = time.time() - start_time
141
- print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
142
-
143
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
144
- if not os.path.exists("chunks.pkl"):
145
- print("开始分片...")
146
- start_time = time.time()
147
- texts = []
148
- total_chars = 0
149
- total_bytes = 0
150
- for i, doc in enumerate(documents):
151
- doc_chunks = text_splitter.split_documents([doc])
152
- for chunk in doc_chunks:
153
- content = chunk.page_content
154
- file_path = chunk.metadata.get("source", "")
155
- book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
156
- texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
157
- total_chars += len(content)
158
- total_bytes += len(content.encode('utf-8'))
159
- if i < 5:
160
- print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
161
- if (i + 1) % 10 == 0:
162
- print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
163
- with open("chunks.pkl", "wb") as f:
164
- pickle.dump(texts, f)
165
- split_time = time.time() - start_time
166
- print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
167
- else:
168
- with open("chunks.pkl", "rb") as f:
169
- texts = pickle.load(f)
170
- print(f"加载已有分片,共 {len(texts)} 个 chunk")
171
-
172
- if not os.path.exists("embeddings.npy"):
173
- print("开始生成嵌入(使用 BAAI/bge-m3 API,分批处理)...")
174
- embeddings = APIEmbeddings()
175
- texts_content = [text.page_content for text in texts]
176
- embeddings_array = embeddings.embed_documents(texts_content)
177
- if os.path.exists("embeddings_temp.npy"):
178
- os.remove("embeddings_temp.npy")
179
- print(f"嵌入生成完成,维度: {embeddings_array.shape}")
180
- else:
181
- embeddings_array = np.load("embeddings.npy")
182
- print(f"加载已有嵌入,维度: {embeddings_array.shape}")
183
-
184
- dimension = embeddings_array.shape[1]
185
- index = faiss.IndexHNSWFlat(dimension, 16)
186
- index.hnsw.efConstruction = 100
187
- print("开始构建 HNSW 索引...")
188
-
189
- batch_size = 5000
190
- total_vectors = embeddings_array.shape[0]
191
- for i in range(0, total_vectors, batch_size):
192
- batch = embeddings_array[i:i + batch_size]
193
- index.add(batch)
194
- print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
195
-
196
- text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
197
- vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
198
- vector_store.index = index
199
- vector_store.docstore._dict.clear()
200
- vector_store.index_to_docstore_id.clear()
201
-
202
- for i, text in enumerate(texts):
203
- doc_id = str(i)
204
- vector_store.docstore._dict[doc_id] = text
205
- vector_store.index_to_docstore_id[i] = doc_id
206
-
207
- print("开始保存索引...")
208
- vector_store.save_local(index_path)
209
- print(f"HNSW 索引已生成并保存到 '{index_path}'")
210
- return vector_store, texts
211
-
212
- # 初始化嵌入模型
213
- embeddings = APIEmbeddings(model_name="BAAI/bge-m3")
214
- print("已初始化 BAAI/bge-m3 嵌入模型,通过 API 调用")
215
-
216
- # 加载或生成索引
217
- index_path = "faiss_index_hnsw_new"
218
- knowledge_base_path = "knowledge_base"
219
-
220
- if not os.path.exists(index_path):
221
- if os.path.exists(knowledge_base_path):
222
- print("检测到 knowledge_base,正在生成 HNSW 索引...")
223
- vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
224
- else:
225
- raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
226
- else:
227
- vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
228
- vector_store.index.hnsw.efSearch = 300
229
- print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300")
230
- with open("chunks.pkl", "rb") as f:
231
- all_documents = pickle.load(f)
232
- book_counts = {}
233
- for doc in all_documents:
234
- book = doc.metadata.get("book", "未知来源")
235
- book_counts[book] = book_counts.get(book, 0) + 1
236
- print(f"all_documents 书籍分布: {book_counts}")
237
-
238
- # 初始化 ChatOpenAI
239
- llm = ChatOpenAI(
240
- model="deepseek/deepseek-r1:free",
241
- api_key=os.environ["OPENROUTER_API_KEY"],
242
- base_url="https://openrouter.ai/api/v1",
243
- timeout=60,
244
- temperature=0.3,
245
- max_tokens=130000,
246
- streaming=True
247
- )
248
-
249
- # 定义提示词模板
250
- prompt_template = PromptTemplate(
251
- input_variables=["context", "question", "chat_history"],
252
- template="""
253
- 你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
254
- 在回答时,请注意以下几点:
255
- - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
256
- - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
257
- - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
258
- - 引用文献:
259
- 1. [文本 1] 摘要... 出自:书名,第X页/章节。
260
- 2. [文本 2] 摘要... 出自:书名,第X页/章节。
261
- (依此类推,至少10篇)
262
- - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
263
- - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
264
- - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
265
- - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
266
- - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
267
- - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
268
- - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
269
- - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
270
- - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
271
- - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
272
- """
273
- )
274
-
275
- # 对话历史管理类
276
- class ConversationHistory:
277
- def __init__(self, max_length=10):
278
- self.history = deque(maxlen=max_length)
279
-
280
- def add_turn(self, question, answer):
281
- self.history.append((question, answer))
282
-
283
- def get_history(self):
284
- return [(turn[0], turn[1]) for turn in self.history]
285
-
286
- def clear(self):
287
- self.history.clear()
288
-
289
- # 用户会话状态类
290
- class UserSession:
291
- def __init__(self):
292
- self.conversation = ConversationHistory()
293
- self.output_queue = queue.Queue()
294
- self.stop_flag = threading.Event()
295
-
296
- # 生成回答的线程函数
297
- def generate_answer_thread(question, session):
298
- stop_flag = session.stop_flag
299
- output_queue = session.output_queue
300
- conversation = session.conversation
301
-
302
- stop_flag.clear()
303
- try:
304
- history_list = conversation.get_history()
305
- history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
306
- query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
307
-
308
- # 1. 使用 BAAI/bge-m3 API 生成查询嵌入
309
- start_time = time.time()
310
- embeddings = APIEmbeddings()
311
- query_embedding = embeddings.embed_query(query_with_context)
312
- embed_time = time.time() - start_time
313
- output_queue.put(f"嵌入耗时 (BAAI/bge-m3 API): {embed_time:.2f} 秒\n")
314
-
315
- if stop_flag.is_set():
316
- output_queue.put("生成已停止")
317
- return
318
-
319
- # 2. 使用 FAISS HNSW 索引进行初始检索
320
- start_time = time.time()
321
- initial_docs_with_scores = vector_store.similarity_search_with_score(query_with_context, k=50)
322
- search_time = time.time() - start_time
323
- output_queue.put(f"初始检索数量: {len(initial_docs_with_scores)}\n检索耗时: {search_time:.2f} 秒\n")
324
-
325
- if stop_flag.is_set():
326
- output_queue.put("生成已停止")
327
- return
328
-
329
- initial_docs = [doc for doc, _ in initial_docs_with_scores]
330
-
331
- # 3. 使用 SiliconFlow 的 BAAI/bge-reranker-v2-m3 进行重排序
332
- start_time = time.time()
333
- reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs, top_n=15)
334
- rerank_time = time.time() - start_time
335
- output_queue.put(f"重排序耗时 (BAAI/bge-reranker-v2-m3): {rerank_time:.2f} 秒\n")
336
-
337
- if stop_flag.is_set():
338
- output_queue.put("生成已停止")
339
- return
340
-
341
- # 调整 final_docs 数量,取前 10 篇
342
- final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
343
- if len(final_docs) < 10:
344
- output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
345
-
346
- # 构造 context,包含文本内容和书目信息
347
- context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
348
- chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
349
- for i, (q, a) in enumerate(history_list)]
350
- prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
351
-
352
- # 4. 使用 LLM 生成回答
353
- answer = ""
354
- start_time = time.time()
355
- for chunk in llm.stream([HumanMessage(content=prompt)]):
356
- if stop_flag.is_set():
357
- output_queue.put(answer + "\n\n(生成已停止)")
358
- return
359
- answer += chunk.content
360
- output_queue.put(answer)
361
- llm_time = time.time() - start_time
362
- output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
363
-
364
- conversation.add_turn(question, answer)
365
- output_queue.put(answer)
366
-
367
- except Exception as e:
368
- output_queue.put(f"Error: {str(e)}")
369
-
370
- # Gradio 接口函数
371
- def answer_question(question, session_state):
372
- if session_state is None:
373
- session_state = UserSession()
374
-
375
- thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
376
- thread.start()
377
-
378
- while thread.is_alive() or not session_state.output_queue.empty():
379
- try:
380
- output = session_state.output_queue.get(timeout=0.1)
381
- yield output, session_state
382
- except queue.Empty:
383
- continue
384
-
385
- while not session_state.output_queue.empty():
386
- yield session_state.output_queue.get(), session_state
387
-
388
- def stop_generation(session_state):
389
- if session_state is not None:
390
- session_state.stop_flag.set()
391
- return "生成已停止,正在中止..."
392
-
393
- def clear_conversation():
394
- return "对话历史已清空,请开始新的对话。", UserSession()
395
-
396
- # 创建 Gradio 界面
397
- with gr.Blocks(title="AI李敖助手") as interface:
398
- gr.Markdown("### AI李敖助手")
399
- gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
400
-
401
- session_state = gr.State(value=None)
402
-
403
- with gr.Row():
404
- with gr.Column(scale=3):
405
- question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
406
- submit_button = gr.Button("提交")
407
- with gr.Column(scale=1):
408
- clear_button = gr.Button("新建对话")
409
- stop_button = gr.Button("停止生成")
410
-
411
- output_text = gr.Textbox(label="回答", interactive=False)
412
-
413
- submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
414
- clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
415
- stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
416
-
417
- # 启动应用
418
- if __name__ == "__main__":
419
- interface.launch(share=True)