import torch from diffusers import StableDiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" def load_pipelines(): model_ids = { "sd_v1_5": "runwayml/stable-diffusion-v1-5", "openjourney_v4": "prompthero/openjourney-v4", "realistic_vision": "SG161222/Realistic_Vision_V5.1" } pipes = {} for name, mid in model_ids.items(): pipe = StableDiffusionPipeline.from_pretrained( mid, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) pipe = pipe.to(device) pipe.enable_attention_slicing() pipes[name] = pipe return pipes def generate_all(pipes, prompt): results = {} for name, pipe in pipes.items(): img = pipe(prompt, guidance_scale=7.5, num_inference_steps=30).images[0] results[name] = img return results