Spaces:
Runtime error
Runtime error
File size: 11,768 Bytes
e90fa51 316e24d e90fa51 316e24d e90fa51 316e24d e90fa51 316e24d e90fa51 316e24d e90fa51 316e24d e90fa51 316e24d e90fa51 316e24d e90fa51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
import json
from constants import BANNER, CITATION_TEXT, WINRATE_HEATMAP, css, js_code, all_task_types, DEFAULT_LP, TASK_TYPE_STR, js_light
from datetime import datetime, timezone
from data_utils import load_eval_results, sample_an_eval_result, apply_length_penalty, post_processing, add_winrates, add_winrates_tasks
# from gradio.themes.utils import colors, fonts, sizes
from themes import Seafoam
from huggingface_hub import HfApi
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid
from utils_display import model_info
# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None
with open("_intro.md", "r") as f:
INTRO_MD = f.read()
with open("_about_us.md", "r") as f:
ABOUT_MD = f.read()
with open("_header.md", "r") as f:
HEADER_MD = f.read()
original_df, ablation_df = None, None
eval_results = load_eval_results()
available_models = [] # to be filled in later
def display_chat_history(model_selections):
eval_item = sample_an_eval_result(eval_results, model_selections)
session_id = eval_item["session_id"]
task = eval_item["task"]
task_type = eval_item["task_type"]
prediction = eval_item["pred"]
gold_answer = eval_item["answer"]
correctness = eval_item["correctness"]
if eval_item["image"]:
image_path = eval_item["image"]
else:
image_path = ""
chats_plan = []
for item_user, item_asst in zip(eval_item["plan_history"]["user"], eval_item["plan_history"]["assistant"]):
chats_plan += [item_user, item_asst]
chats_ground = []
for item_user, item_asst in zip(eval_item["ground_history"]["user"], eval_item["ground_history"]["assistant"]):
chats_ground += [item_user, item_asst]
chats_plan = [(chats_plan[i], chats_plan[i+1]) for i in range(0, len(chats_plan), 2)]
chats_ground = [(chats_ground[i], chats_ground[i+1]) for i in range(0, len(chats_ground), 2)]
task_metadata = f"- ๐: `{session_id}` \n- **Task category**: {task_type}"
if image_path != "":
image = f'<div style="text-align: center;"> <img src="{image_path}" style="height: 250px;"> </div>'
return task, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, image
else:
return task, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, f'<div style="text-align: center;"> </div>'
def slider_change_main(length_penalty):
global original_df, ablation_df
adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
adjusted_df = adjusted_df[["Model", "Overall Elo", "Task-Avg Elo", "# battles", "Length"]]
adjusted_df = adjusted_df.sort_values(by="Overall Elo", ascending=False)
adjusted_df = add_winrates(adjusted_df)
adjusted_df = adjusted_df.drop(columns=["Length"])
return adjusted_df
def slider_change_full(length_penalty, show_winrate):
global original_df, ablation_df
adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
# sort the model by the "Task-Avg Elo" column
adjusted_df = adjusted_df.sort_values(by="Task-Avg Elo", ascending=False)
adjusted_df.drop(columns=["Overall Elo", "Task-Avg Elo", "# battles", "Length"], inplace=True)
if show_winrate == "none":
return adjusted_df
elif show_winrate == "gpt-3.5":
adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-3.5")
elif show_winrate == "gpt-4":
adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-4")
return adjusted_df
seafoam = Seafoam()
def build_demo(TYPES):
global original_df, ablation_df, skip_empty_original_df, skip_empty_ablation_df, available_models
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
gr.Markdown(HEADER_MD, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐ Explore", elem_id="od-benchmark-tab-table", id=2):
with gr.Row():
btn_show_history = gr.Button("๐ฒ Click here to sample an example of ๐ช Lumos outputs! ", elem_classes="sample_button")
with gr.Row():
with gr.Column():
with gr.Accordion("Choose models to sample from", open=False, elem_classes="accordion-label"):
model_options = available_models
selected_models = gr.CheckboxGroup(model_options, info="", value=model_options, show_label=False, elem_id="select-models")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {selected_models: {"value": [], "__type__": "update"}}, inputs=[], outputs=[selected_models])
with gr.Row():
with gr.Column(scale=1.5):
with gr.Accordion("๐ Task Description", open=True, elem_classes="accordion-label"):
task = gr.Markdown("", elem_classes="markdown-text-tiny")
task.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(scale=1):
with gr.Accordion("Input Image (optional)", open=True, elem_classes="accordion-label"):
image = gr.HTML("", elem_id="input_image")
image.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
with gr.Accordion("๐ Task Metadata", open=False, elem_classes="accordion-label"):
task_metadata = gr.Markdown("", elem_classes="markdown-text-tiny")
task_metadata.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
gr.Markdown("## ๐ข Plan Module Process History", elem_classes="markdown-text")
Chatbot_Common_Plan = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height="auto", container=False, label="Common Plan History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
Chatbot_Common_Plan.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column():
gr.Markdown("## ๐ข Ground Module Process History", elem_classes="markdown-text")
Chatbot_Common_Ground = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height="auto", container=False, label="Common Ground History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
Chatbot_Common_Ground.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
with gr.Accordion("๐ Prediction", open=True, elem_classes="accordion-label"):
prediction = gr.Markdown("", elem_classes="markdown-text-tiny")
prediction.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column():
with gr.Accordion("๐ Ground-Truth Answer", open=True, elem_classes="accordion-label"):
gold_answer = gr.HTML("", elem_id="ground-truth-answer")
gold_answer.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column():
with gr.Accordion("Correctness", open=True, elem_classes="accordion-label"):
correctness = gr.HTML("", elem_id="correct-or-not")
correctness.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
# Display chat history when button is clicked
btn_show_history.click(fn=display_chat_history, inputs=[selected_models], outputs=[task, Chatbot_Common_Plan, Chatbot_Common_Ground, task_metadata, prediction, gold_answer, correctness, image])
with gr.TabItem("๐ฎ About Us", elem_id="od-benchmark-tab-table", id=3):
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text-small")
with gr.Row():
with gr.Accordion("๐ Citation", open=False, elem_classes="accordion-label"):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--result_file", help="Path to results table", default="data_dir/elo_ranks.all.jsonl")
parser.add_argument("--length_balation_file", help="Path to results table", default="data_dir/elo_ranks.length_ablation.all.jsonl")
parser.add_argument("--skip_empty_result_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.all.jsonl")
parser.add_argument("--skip_empty_length_balation_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.length_ablation.all.jsonl")
args = parser.parse_args()
LAST_UPDATED = datetime.fromtimestamp(Path(args.result_file).stat().st_mtime, tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
original_df = pd.read_json(args.result_file , lines=True)
ablation_df = pd.read_json(args.length_balation_file, lines=True)
skip_empty_original_df = pd.read_json(args.skip_empty_result_file , lines=True)
skip_empty_ablation_df = pd.read_json(args.skip_empty_length_balation_file, lines=True)
# available_models = sorted(list(set(list(original_df["model name "]))))
available_models = list(model_info.keys())
# remove the rows where the model name is not in the available_models
original_df = original_df[original_df["model name "].isin(available_models)]
ablation_df = ablation_df[ablation_df["model name "].isin(available_models)]
skip_empty_ablation_df = skip_empty_ablation_df[skip_empty_ablation_df["model name "].isin(available_models)]
skip_empty_original_df = skip_empty_original_df[skip_empty_original_df["model name "].isin(available_models)]
model_len_info = json.load(open("model_len_info.json", "r"))
original_df = post_processing(original_df, model_len_info)
ablation_df = post_processing(ablation_df, model_len_info)
skip_empty_original_df = post_processing(skip_empty_original_df, model_len_info)
skip_empty_ablation_df = post_processing(skip_empty_ablation_df, model_len_info)
TYPES = ["markdown", "number"]
demo = build_demo(TYPES)
demo.launch(share=args.share, allowed_paths=["."], height=1000)
|