import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer # Import the tokenizer # Use the appropriate tokenizer for your model. tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Define a maximum context length (tokens). Check your model's documentation! MAX_CONTEXT_LENGTH = 4096 # Example: Adjust this based on your model! # Read the default prompt from a file with open("prompt.txt", "r") as file: nvc_prompt_template = file.read() def count_tokens(text: str) -> int: """Counts the number of tokens in a given string.""" return len(tokenizer.encode(text)) def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]: """Truncates the conversation history to fit within the maximum token limit. Args: history: The conversation history (list of user/assistant tuples). system_message: The system message. max_length: The maximum number of tokens allowed. Returns: The truncated history. """ truncated_history = [] system_message_tokens = count_tokens(system_message) current_length = system_message_tokens # Iterate backwards through the history (newest to oldest) for user_msg, assistant_msg in reversed(history): user_tokens = count_tokens(user_msg) if user_msg else 0 assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0 turn_tokens = user_tokens + assistant_tokens if current_length + turn_tokens <= max_length: truncated_history.insert(0, (user_msg, assistant_msg)) # Add to the beginning current_length += turn_tokens else: break # Stop adding turns if we exceed the limit return truncated_history def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): """Responds to a user message, maintaining conversation history, using special tokens and message list.""" formatted_system_message = nvc_prompt_template truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100) # Reserve space for the new message and some generation messages = [{"role": "system", "content": formatted_system_message}] # Start with system message for user_msg, assistant_msg in truncated_history: if user_msg: messages.append({"role": "user", "content": f"<|user|>\n{user_msg}"}) if assistant_msg: messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}"}) messages.append({"role": "user", "content": f"<|user|>\n{message}"}) response = "" try: for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content response += token yield response except Exception as e: print(f"An error occurred: {e}") yield "I'm sorry, I encountered an error. Please try again." # --- Gradio Interface --- demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value=nvc_prompt_template, label="System message", visible=False), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()