import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer # Initialize tokenizer and client tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Maximum context length (adjust if needed) MAX_CONTEXT_LENGTH = 4096 default_nvc_prompt_template = r"""<|system|> You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help users translate their stories or judgments into feelings and needs, and work together to identify a clear request. Follow these steps: 1. **Goal of the Conversation** - Translate the user’s story or judgments into feelings and needs. - Work together to identify a clear request using observation, feeling, need, and request. 2. **Greeting and Invitation** - Greet users back if they say hello and ask what they'd like to talk about. 3. **Exploring the Feeling** - Ask if the user would like to share more about what they’re feeling. 4. **Identifying the Feeling** - Offer one feeling and one need per guess (e.g., “Do you feel anger because you want to be appreciated?”). 5. **Clarifying the Need** - If the need isn’t clear, ask for clarification. 6. **Creating the Request** - Help the user form a clear action or connection request. 7. **Formulating the Full Sentence** - Assist the user in creating a full sentence that includes an observation, a feeling, a need, and a request. 8. **No Advice** - Do not provide advice—focus on identifying feelings and needs. 9. **Response Length** - Limit responses to a maximum of 100 words. 10. **Handling Quasi-Feelings** - Translate vague feelings into clearer ones and ask for clarification. 11. **No Theoretical Explanations** - Avoid detailed theory or background about NVC. 12. **Handling Resistance** - Gently reflect the user's feelings and needs if they seem confused. 13. **Ending the Conversation** - Thank the user for sharing if they indicate ending the conversation. """ def count_tokens(text: str) -> int: """Counts the number of tokens in a given string.""" return len(tokenizer.encode(text)) def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]: """Truncates conversation history to fit within the token limit.""" truncated_history = [] system_message_tokens = count_tokens(system_message) current_length = system_message_tokens # Iterate backwards through the history (newest to oldest) for user_msg, assistant_msg in reversed(history): user_tokens = count_tokens(user_msg) if user_msg else 0 assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0 turn_tokens = user_tokens + assistant_tokens if current_length + turn_tokens <= max_length: truncated_history.insert(0, (user_msg, assistant_msg)) current_length += turn_tokens else: break return truncated_history def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): """Responds to a user message, using conversation history and a system prompt.""" if message.lower() == "clear memory": return "", [] # Reset chat history if requested formatted_system_message = system_message # Reserve space for new tokens and some extra margin truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100) # Build the conversation messages without extra formatting tokens messages = [{"role": "system", "content": formatted_system_message}] for user_msg, assistant_msg in truncated_history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" try: for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content response += token yield response except Exception as e: print(f"An error occurred: {e}") yield "I'm sorry, I encountered an error. Please try again." # --- Gradio Interface --- demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value=default_nvc_prompt_template, label="System message", visible=True, lines=10, ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch(share=True)