ruslanmv commited on
Commit
15152ff
·
verified ·
1 Parent(s): e1561c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -78
app.py CHANGED
@@ -6,7 +6,7 @@ from transformers import AutoTokenizer # Import the tokenizer
6
  tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
- # Define a maximum context length (tokens). Check your model's documentation!
10
  MAX_CONTEXT_LENGTH = 4096 # Example: Adjust this based on your model!
11
 
12
  nvc_prompt_template = r"""<|system|>
@@ -78,6 +78,7 @@ You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help us
78
  - “Thank you for sharing with me. If you’d like to continue this conversation later, I’m here to help.”</s>
79
  """
80
 
 
81
  def count_tokens(text: str) -> int:
82
  """Counts the number of tokens in a given string."""
83
  return len(tokenizer.encode(text))
@@ -118,92 +119,53 @@ def respond(
118
  top_p,
119
  ):
120
  """Responds to a user message, maintaining conversation history, using special tokens and message list."""
121
- # Allow a modifiable system prompt; if none is provided, fall back to the default.
122
- formatted_system_message = system_message if system_message else nvc_prompt_template
123
 
124
- truncated_history = truncate_history(
125
- history,
126
- formatted_system_message,
127
- MAX_CONTEXT_LENGTH - max_tokens - 100 # Reserve space for the new message and some generation
128
- )
129
 
130
- messages = [{"role": "system", "content": formatted_system_message}] # Start with system message
131
  for user_msg, assistant_msg in truncated_history:
132
  if user_msg:
133
- messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"})
134
  if assistant_msg:
135
- messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"})
136
- messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"})
 
 
137
 
138
  response = ""
139
  try:
140
- for chunk in client.chat_completion(
141
- messages, # Send the messages list with the formatted content
142
- max_tokens=max_tokens,
143
- stream=True,
144
- temperature=temperature,
145
- top_p=top_p,
146
- ):
147
- token = chunk.choices[0].delta.content
148
- response += token
149
- yield response
150
  except Exception as e:
151
- print(f"An error occurred: {e}")
152
- yield "I'm sorry, I encountered an error. Please try again."
153
-
154
- # --- Gradio Interface using Blocks ---
155
- with gr.Blocks() as demo:
156
- # State to hold conversation history
157
- state = gr.State([])
158
-
159
- # Chatbot display
160
- chatbot = gr.Chatbot(label="NVC Chatbot")
161
-
162
- # System prompt textbox (modifiable)
163
- with gr.Row():
164
- system_prompt = gr.Textbox(value=nvc_prompt_template, label="System Prompt (modifiable)")
165
-
166
- # Controls for generation parameters
167
- with gr.Row():
168
- max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
169
- temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
170
- top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
171
-
172
- # Button to clear conversation memory
173
- with gr.Row():
174
- clear_button = gr.Button("Clear Memory")
175
-
176
- # User input area and send button
177
- with gr.Row():
178
- user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
179
- send_button = gr.Button("Send")
180
-
181
- def chat_step(message, history, system_message, max_tokens, temperature, top_p):
182
- # Call the respond generator and accumulate the final response.
183
- gen = respond(message, history, system_message, max_tokens, temperature, top_p)
184
- response = ""
185
- for r in gen:
186
- response = r # In a streaming scenario, you might update the UI incrementally.
187
- history.append((message, response))
188
- return history, history
189
-
190
- # Trigger the chat step on button click or when submitting the textbox.
191
- send_button.click(
192
- chat_step,
193
- inputs=[user_input, state, system_prompt, max_tokens_slider, temperature_slider, top_p_slider],
194
- outputs=[chatbot, state],
195
- )
196
- user_input.submit(
197
- chat_step,
198
- inputs=[user_input, state, system_prompt, max_tokens_slider, temperature_slider, top_p_slider],
199
- outputs=[chatbot, state],
200
- )
201
-
202
- # Clear memory: resets both the chatbot display and the state.
203
- def clear_history():
204
- return [], []
205
-
206
- clear_button.click(clear_history, inputs=[], outputs=[chatbot, state])
207
 
208
  if __name__ == "__main__":
209
  demo.launch()
 
6
  tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ # Define a maximum context length (tokens). Check your model's documentation!
10
  MAX_CONTEXT_LENGTH = 4096 # Example: Adjust this based on your model!
11
 
12
  nvc_prompt_template = r"""<|system|>
 
78
  - “Thank you for sharing with me. If you’d like to continue this conversation later, I’m here to help.”</s>
79
  """
80
 
81
+
82
  def count_tokens(text: str) -> int:
83
  """Counts the number of tokens in a given string."""
84
  return len(tokenizer.encode(text))
 
119
  top_p,
120
  ):
121
  """Responds to a user message, maintaining conversation history, using special tokens and message list."""
 
 
122
 
123
+ formatted_system_message = nvc_prompt_template
124
+
125
+ truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100) # Reserve space for the new message and some generation
 
 
126
 
127
+ messages = [{"role": "system", "content": formatted_system_message}] # Start with system message as before
128
  for user_msg, assistant_msg in truncated_history:
129
  if user_msg:
130
+ messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"}) # Format history user message
131
  if assistant_msg:
132
+ messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"}) # Format history assistant message
133
+
134
+ messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"}) # Format current user message
135
+
136
 
137
  response = ""
138
  try:
139
+ for chunk in client.chat_completion(
140
+ messages, # Send the messages list again, but with formatted content
141
+ max_tokens=max_tokens,
142
+ stream=True,
143
+ temperature=temperature,
144
+ top_p=top_p,
145
+ ):
146
+ token = chunk.choices[0].delta.content
147
+ response += token
148
+ yield response
149
  except Exception as e:
150
+ print(f"An error occurred: {e}") # It's a good practice add a try-except block
151
+ yield "I'm sorry, I encountered an error. Please try again."
152
+
153
+ # --- Gradio Interface ---
154
+ demo = gr.ChatInterface(
155
+ respond,
156
+ additional_inputs=[
157
+ gr.Textbox(value=nvc_prompt_template, label="System message", visible=False), # Set the NVC prompt as default and hide the system message box
158
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
159
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
160
+ gr.Slider(
161
+ minimum=0.1,
162
+ maximum=1.0,
163
+ value=0.95,
164
+ step=0.05,
165
+ label="Top-p (nucleus sampling)",
166
+ ),
167
+ ],
168
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
  if __name__ == "__main__":
171
  demo.launch()