Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from transformers import AutoTokenizer # Import the tokenizer
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
# Define a maximum context length (tokens).
|
10 |
MAX_CONTEXT_LENGTH = 4096 # Example: Adjust this based on your model!
|
11 |
|
12 |
nvc_prompt_template = r"""<|system|>
|
@@ -78,6 +78,7 @@ You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help us
|
|
78 |
- “Thank you for sharing with me. If you’d like to continue this conversation later, I’m here to help.”</s>
|
79 |
"""
|
80 |
|
|
|
81 |
def count_tokens(text: str) -> int:
|
82 |
"""Counts the number of tokens in a given string."""
|
83 |
return len(tokenizer.encode(text))
|
@@ -118,92 +119,53 @@ def respond(
|
|
118 |
top_p,
|
119 |
):
|
120 |
"""Responds to a user message, maintaining conversation history, using special tokens and message list."""
|
121 |
-
# Allow a modifiable system prompt; if none is provided, fall back to the default.
|
122 |
-
formatted_system_message = system_message if system_message else nvc_prompt_template
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
MAX_CONTEXT_LENGTH - max_tokens - 100 # Reserve space for the new message and some generation
|
128 |
-
)
|
129 |
|
130 |
-
messages = [{"role": "system", "content": formatted_system_message}]
|
131 |
for user_msg, assistant_msg in truncated_history:
|
132 |
if user_msg:
|
133 |
-
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"})
|
134 |
if assistant_msg:
|
135 |
-
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"})
|
136 |
-
|
|
|
|
|
137 |
|
138 |
response = ""
|
139 |
try:
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
except Exception as e:
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# --- Gradio Interface
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
171 |
-
|
172 |
-
# Button to clear conversation memory
|
173 |
-
with gr.Row():
|
174 |
-
clear_button = gr.Button("Clear Memory")
|
175 |
-
|
176 |
-
# User input area and send button
|
177 |
-
with gr.Row():
|
178 |
-
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
179 |
-
send_button = gr.Button("Send")
|
180 |
-
|
181 |
-
def chat_step(message, history, system_message, max_tokens, temperature, top_p):
|
182 |
-
# Call the respond generator and accumulate the final response.
|
183 |
-
gen = respond(message, history, system_message, max_tokens, temperature, top_p)
|
184 |
-
response = ""
|
185 |
-
for r in gen:
|
186 |
-
response = r # In a streaming scenario, you might update the UI incrementally.
|
187 |
-
history.append((message, response))
|
188 |
-
return history, history
|
189 |
-
|
190 |
-
# Trigger the chat step on button click or when submitting the textbox.
|
191 |
-
send_button.click(
|
192 |
-
chat_step,
|
193 |
-
inputs=[user_input, state, system_prompt, max_tokens_slider, temperature_slider, top_p_slider],
|
194 |
-
outputs=[chatbot, state],
|
195 |
-
)
|
196 |
-
user_input.submit(
|
197 |
-
chat_step,
|
198 |
-
inputs=[user_input, state, system_prompt, max_tokens_slider, temperature_slider, top_p_slider],
|
199 |
-
outputs=[chatbot, state],
|
200 |
-
)
|
201 |
-
|
202 |
-
# Clear memory: resets both the chatbot display and the state.
|
203 |
-
def clear_history():
|
204 |
-
return [], []
|
205 |
-
|
206 |
-
clear_button.click(clear_history, inputs=[], outputs=[chatbot, state])
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
demo.launch()
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Define a maximum context length (tokens). Check your model's documentation!
|
10 |
MAX_CONTEXT_LENGTH = 4096 # Example: Adjust this based on your model!
|
11 |
|
12 |
nvc_prompt_template = r"""<|system|>
|
|
|
78 |
- “Thank you for sharing with me. If you’d like to continue this conversation later, I’m here to help.”</s>
|
79 |
"""
|
80 |
|
81 |
+
|
82 |
def count_tokens(text: str) -> int:
|
83 |
"""Counts the number of tokens in a given string."""
|
84 |
return len(tokenizer.encode(text))
|
|
|
119 |
top_p,
|
120 |
):
|
121 |
"""Responds to a user message, maintaining conversation history, using special tokens and message list."""
|
|
|
|
|
122 |
|
123 |
+
formatted_system_message = nvc_prompt_template
|
124 |
+
|
125 |
+
truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100) # Reserve space for the new message and some generation
|
|
|
|
|
126 |
|
127 |
+
messages = [{"role": "system", "content": formatted_system_message}] # Start with system message as before
|
128 |
for user_msg, assistant_msg in truncated_history:
|
129 |
if user_msg:
|
130 |
+
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"}) # Format history user message
|
131 |
if assistant_msg:
|
132 |
+
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"}) # Format history assistant message
|
133 |
+
|
134 |
+
messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"}) # Format current user message
|
135 |
+
|
136 |
|
137 |
response = ""
|
138 |
try:
|
139 |
+
for chunk in client.chat_completion(
|
140 |
+
messages, # Send the messages list again, but with formatted content
|
141 |
+
max_tokens=max_tokens,
|
142 |
+
stream=True,
|
143 |
+
temperature=temperature,
|
144 |
+
top_p=top_p,
|
145 |
+
):
|
146 |
+
token = chunk.choices[0].delta.content
|
147 |
+
response += token
|
148 |
+
yield response
|
149 |
except Exception as e:
|
150 |
+
print(f"An error occurred: {e}") # It's a good practice add a try-except block
|
151 |
+
yield "I'm sorry, I encountered an error. Please try again."
|
152 |
+
|
153 |
+
# --- Gradio Interface ---
|
154 |
+
demo = gr.ChatInterface(
|
155 |
+
respond,
|
156 |
+
additional_inputs=[
|
157 |
+
gr.Textbox(value=nvc_prompt_template, label="System message", visible=False), # Set the NVC prompt as default and hide the system message box
|
158 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
159 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
160 |
+
gr.Slider(
|
161 |
+
minimum=0.1,
|
162 |
+
maximum=1.0,
|
163 |
+
value=0.95,
|
164 |
+
step=0.05,
|
165 |
+
label="Top-p (nucleus sampling)",
|
166 |
+
),
|
167 |
+
],
|
168 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
demo.launch()
|