|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import AutoTokenizer |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
MAX_CONTEXT_LENGTH = 4096 |
|
|
|
|
|
with open("prompt.txt", "r") as file: |
|
nvc_prompt_template = file.read() |
|
|
|
def count_tokens(text: str) -> int: |
|
"""Counts the number of tokens in a given string.""" |
|
return len(tokenizer.encode(text)) |
|
|
|
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]: |
|
"""Truncates the conversation history to fit within the maximum token limit. |
|
Args: |
|
history: The conversation history (list of user/assistant tuples). |
|
system_message: The system message. |
|
max_length: The maximum number of tokens allowed. |
|
Returns: |
|
The truncated history. |
|
""" |
|
truncated_history = [] |
|
system_message_tokens = count_tokens(system_message) |
|
current_length = system_message_tokens |
|
|
|
|
|
for user_msg, assistant_msg in reversed(history): |
|
user_tokens = count_tokens(user_msg) if user_msg else 0 |
|
assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0 |
|
turn_tokens = user_tokens + assistant_tokens |
|
|
|
if current_length + turn_tokens <= max_length: |
|
truncated_history.insert(0, (user_msg, assistant_msg)) |
|
current_length += turn_tokens |
|
else: |
|
break |
|
|
|
return truncated_history |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
"""Responds to a user message, maintaining conversation history, using special tokens and message list.""" |
|
formatted_system_message = nvc_prompt_template |
|
|
|
truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100) |
|
|
|
messages = [{"role": "system", "content": formatted_system_message}] |
|
for user_msg, assistant_msg in truncated_history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"}) |
|
|
|
messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"}) |
|
|
|
response = "" |
|
try: |
|
for chunk in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content |
|
response += token |
|
yield response |
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
yield "I'm sorry, I encountered an error. Please try again." |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value=nvc_prompt_template, label="System message", visible=False), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|