|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import AutoTokenizer |
|
from langchain.memory import ConversationBufferWindowMemory |
|
from langchain.schema import HumanMessage, AIMessage, SystemMessage |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
MAX_CONTEXT_LENGTH = 4096 |
|
|
|
|
|
with open("prompt.txt", "r") as file: |
|
nvc_prompt_template = file.read() |
|
|
|
|
|
memory = ConversationBufferWindowMemory(k=10, return_messages=True) |
|
|
|
def count_tokens(text: str) -> int: |
|
return len(tokenizer.encode(text)) |
|
|
|
def truncate_history(messages, max_length): |
|
truncated_messages = [] |
|
total_tokens = 0 |
|
|
|
for message in reversed(messages): |
|
message_tokens = count_tokens(message.content) |
|
if total_tokens + message_tokens <= max_length: |
|
truncated_messages.insert(0, message) |
|
total_tokens += message_tokens |
|
else: |
|
break |
|
|
|
return truncated_messages |
|
|
|
def respond( |
|
message, |
|
history, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
formatted_system_message = nvc_prompt_template |
|
|
|
|
|
memory.save_context({"input": message}, {"output": ""}) |
|
chat_history = memory.load_memory_variables({})["history"] |
|
|
|
|
|
max_history_tokens = MAX_CONTEXT_LENGTH - max_tokens - count_tokens(formatted_system_message) - 100 |
|
truncated_chat_history = truncate_history(chat_history, max_history_tokens) |
|
|
|
|
|
messages = [SystemMessage(content=formatted_system_message)] |
|
messages.extend(truncated_chat_history) |
|
messages.append(HumanMessage(content=message)) |
|
|
|
|
|
formatted_messages = [] |
|
for msg in messages: |
|
role = "system" if isinstance(msg, SystemMessage) else "user" if isinstance(msg, HumanMessage) else "assistant" |
|
content = f"<|{role}|>\n{msg.content}</s>" |
|
formatted_messages.append({"role": role, "content": content}) |
|
|
|
response = "" |
|
try: |
|
for chunk in client.chat_completion( |
|
formatted_messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = chunk.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
memory.chat_memory.add_ai_message(response) |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
yield "I'm sorry, I encountered an error. Please try again." |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value=nvc_prompt_template, label="System message", visible=True), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|