ruslanmv's picture
Update app.py
2d10bdd verified
raw
history blame
3.35 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import LlamaTokenizer # Use LlamaTokenizer instead of AutoTokenizer
# Load the correct tokenizer
tokenizer = LlamaTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Define max context length (tokens)
MAX_CONTEXT_LENGTH = 4096
default_nvc_prompt_template = """You are Roos, an NVC (Nonviolent Communication) Chatbot. Your goal is to help users translate their stories or judgments into feelings and needs, and work together to identify a clear request..."""
def count_tokens(text: str) -> int:
"""Counts the number of tokens in a given string."""
return len(tokenizer.encode(text))
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
"""Truncates the conversation history to fit within the maximum token limit."""
truncated_history = []
system_message_tokens = count_tokens(system_message)
current_length = system_message_tokens
for user_msg, assistant_msg in reversed(history):
user_tokens = count_tokens(user_msg) if user_msg else 0
assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0
turn_tokens = user_tokens + assistant_tokens
if current_length + turn_tokens <= max_length:
truncated_history.insert(0, (user_msg, assistant_msg)) # Add to the beginning
current_length += turn_tokens
else:
break # Stop if limit exceeded
return truncated_history
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""Handles user message and generates a response."""
if message.lower() == "clear memory":
return "", [] # Reset chat history
formatted_system_message = system_message
truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100)
messages = [{"role": "system", "content": formatted_system_message}]
for user_msg, assistant_msg in truncated_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
try:
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p
):
token = chunk.choices[0].delta.content
response += token
yield response
except Exception as e:
print(f"Error: {e}")
yield "I'm sorry, I encountered an error. Please try again."
# Build Gradio UI
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value=default_nvc_prompt_template, label="System message", lines=10),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch(share=True)