File size: 6,656 Bytes
8eb9635
 
 
 
 
 
fc90ecf
dd1a64f
8eb9635
04433f3
8eb9635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04433f3
8eb9635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd1a64f
681eeb9
 
 
a7ddb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839440d
 
8eb9635
 
 
 
 
 
5863902
 
adec782
 
8eb9635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from pathlib import Path
import gradio as gr
import openai
import os
import tiktoken 


# Set secret key
HF_TOKEN = os.getenv("NextStar")


#Set prompt engineering paths (so globally available)
inStructionPath = "intro_instructions_combine.txt"
inRulesPath = "formatting_rules_expanded.txt"
inExamplesPath = "examples_longer1.txt"
inDialoguesPath = "examples_dialogues.txt"  

#Set to read in prompting files
def openReadFiles(inpath):
    infile = Path (inpath)
    with open(infile) as f:
        data = f.read()
    return data


# Set up prompting data (so globally available)
instruct = openReadFiles(inStructionPath)
rules = openReadFiles(inRulesPath)
examples = openReadFiles(inExamplesPath)
exampleDialogues = openReadFiles(inDialoguesPath)


def formatQuery(engText):
    """Add prompt instructions to English text for GPT4"""
    instruct = "Now, translate the following sentences to perfect ASL gloss using the grammatical, syntactic, and notation rules you just learned. \n\n"
    query = instruct+engText
    return query


def num_tokens_from_string(string: str, encoding_name: str) -> int:
    """Returns the number of tokens in a text string."""
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(string))
    return num_tokens


def checkTokens(tokens):
    """Checks tokens to ensrue we can translate to ASL gloss"""
    goAhead = None
    if tokens >= 553:
        print(f"Cannot translate to ASL gloss at this time: too many tokens {tokens}")
        goAhead = False
    else:
        goAhead = True
        print(f"Has less than 553 tokens - can continue translating")
    return goAhead
    
def getGlossFromText(query):
    """Sets all for getting ASL gloss"""
    text = formatQuery(query)
    tokens = num_tokens_from_string(text, "cl100k_base")
    goAhead = checkTokens(tokens)
    if goAhead == True:
        results = getASLGloss(text)
    else:
        results = "Too many tokens: cannot translate"
    return results



def getASLGloss(testQs):
    """Get ASL gloss from OpenAI using our prompt engineering"""
    openai.api_key = HF_TOKEN
    completion = openai.ChatCompletion.create(
      model = 'gpt-4',
      messages = [
          {"role": "system", "content": instruct},
          {"role": "system", "content": rules},
          {"role": "system", "content": examples},
          {"role": "system", "content": exampleDialogues},
          {"role": "user", "content": testQs},
      ],
    
      temperature = 0  
    )
    results = completion['choices'][0]['message']['content']
    return results
     

    

def main():
    
    title = "English to ASL Gloss"
    #description = """Translate English text to ASL Gloss"""
    description = "This program uses GPT4 alongside prompt engineering to \
        translate English text to ASL gloss.\n \
        Type in the English sentence you would like to translate into ASL Gloss. \
        \n These are the rules for expressing superscript ASL gloss.\
        Anything within the angle brackets <> indicates superscript notation.\
        If the angle brackets are directly next to a word, the notation inside \
        the angle brackets is associate with just that word, e.g. WILL<A>.  \
        If the angle brackets are next to a whitespace after a work,\
        the notation inside the angle bracket is associated with all of the words\
        before it, up until a comma, another angle bracket, or a double space.\
        This sentence is an example of this rule:\
        \n NEXT-YEAR <Ti>, MY FIANCE <T>, TWO-OF-US MARRY <A>.\
        \n The superscript notation options are as follows:\
        \n Ti marks time\
        \n T marks topic\
        \n A marks comment\
        \n Y/N marks yes-no question\
        \n WHQ marks wh-question\
        \n RHQ marks rhetorical question\
        \n <Cond> marks conditional sentences\
        \n lower case marks directional verbs\
        \n ++ marks emphesis ('very' or 'a lot of')\
        \n # marks lexical fingerspelling \
        \n - marks space between individual letters of fingerspelling\
        \n Note: This is only a prototype of our final product.  It is imperfect \
        and is still in development.\
        \n For additional details on how the program works, please see \
        [the README](https://huggingface.co/spaces/rrakov/EngTexToASLGloss/blob/main/README.md)"

    interface = gr.Interface(
        fn=getGlossFromText, 
        inputs="textbox", 
        outputs="text",
        title = title,
        description = description)
        #examples = [[("Prompt: Every year I buy my dad a gift \n", "Result:  EVERY-YEAR<Ti>, MY DAD GIFT<T>, ME BUY<A>")]])
        # examples=[["Every year I buy my dad a gift"], ["I always look forward to the family vacation"], 
        #         ["If I don't travel often, I am sad."]])
    interface.launch()
    

    
if __name__ == "__main__":
    main()

    
#     def getAnswer(query, texts = texts, embeddings = embeddings):
#         docsearch = FAISS.from_texts(texts, embeddings)
#         docs = docsearch.similarity_search(query)
#         chain = load_qa_chain(OpenAI(openai_api_key = HF_TOKEN, temperature=0), chain_type="map_reduce", return_map_steps=False)
#         response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
#             #interum_q = list(response.keys())
#         interum_a = list(response.values())
#         q = query
#         a = interum_a[0]
#         return a

#     # query = "describe the fisher database"
#     # docs = docsearch.similarity_search(query)
#     # chain = load_qa_chain(OpenAI(openai_api_key = "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", temperature=0), chain_type="map_reduce", return_map_steps=False)
#     # chain({"input_documents": docs, "question": query}, return_only_outputs=True)
#     title = "Query the S Drive!"
#     description = """This QA system will answer questions based on information in [data descriptions](https://indeocorp-my.sharepoint.com/:x:/g/personal/rrakov_sorenson_com/EWhs_Gpp9nNEukR7iJLd4mQBPREngKdRGYpT545jX8mY4Q?e=9EeEWF)"""

#     interface = gr.Interface(
#         fn=getAnswer, 
#         inputs="textbox", 
#         outputs="text",
#         title = title,
#         description = description,
#         examples=[["Where is the Fisher database?"], ["Where is the Defined Crowd audio?"], ["Do we have any Spanish audio data?"], 
#                 ["How many audio files do we have in the CallHome database?"]])
#     interface.launch()
    

    
# if __name__ == "__main__":
#     main()

# def main():
#     results = setMode()
#     print (results)
# main()