Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import argparse
|
7 |
+
import yaml
|
8 |
+
from torchvision import transforms
|
9 |
+
import onnxruntime as ort
|
10 |
+
from PIL import Image
|
11 |
+
from insightface.app import FaceAnalysis
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from torchvision.transforms.functional import rgb_to_grayscale
|
14 |
+
|
15 |
+
from src.utils.crops import *
|
16 |
+
from repos.stylematte.stylematte.models import StyleMatte
|
17 |
+
from src.utils.inference import *
|
18 |
+
from src.utils.inpainter import LamaInpainter
|
19 |
+
from src.utils.preblending import calc_pseudo_target_bg
|
20 |
+
from train_aligner import AlignerModule
|
21 |
+
from train_blender import BlenderModule
|
22 |
+
|
23 |
+
@spaces.GPU
|
24 |
+
def infer_headswap(source, target):
|
25 |
+
def calc_mask(img):
|
26 |
+
if isinstance(img, np.ndarray):
|
27 |
+
img = torch.from_numpy(img).permute(2, 0, 1).cuda()
|
28 |
+
if img.max() > 1.:
|
29 |
+
img = img / 255.0
|
30 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
31 |
+
std=[0.229, 0.224, 0.225])
|
32 |
+
input_t = normalize(img)
|
33 |
+
input_t = input_t.unsqueeze(0).float()
|
34 |
+
with torch.no_grad():
|
35 |
+
out = segment_model(input_t)
|
36 |
+
result = out[0]
|
37 |
+
|
38 |
+
return result[0]
|
39 |
+
|
40 |
+
def process_img(img, target=False):
|
41 |
+
full_frames = np.array(img)[:, :, ::-1]
|
42 |
+
dets = app.get(full_frames)
|
43 |
+
kps = dets[0]['kps']
|
44 |
+
wide = wide_crop_face(full_frames, kps, return_M=target)
|
45 |
+
if target:
|
46 |
+
wide, M = wide
|
47 |
+
arc = norm_crop(full_frames, kps)
|
48 |
+
mask = calc_mask(wide)
|
49 |
+
arc = normalize_and_torch(arc)
|
50 |
+
wide = normalize_and_torch(wide)
|
51 |
+
if target:
|
52 |
+
return wide, arc, mask, full_frames, M
|
53 |
+
return wide, arc, mask
|
54 |
+
|
55 |
+
wide_source, arc_source, mask_source = process_img(source)
|
56 |
+
wide_target, arc_target, mask_target, full_frame, M = process_img(target, target=True)
|
57 |
+
|
58 |
+
|
59 |
+
wide_source = wide_source.unsqueeze(1)
|
60 |
+
arc_source = arc_source.unsqueeze(1)
|
61 |
+
source_mask = mask_source.unsqueeze(0).unsqueeze(0).unsqueeze(0)
|
62 |
+
target_mask = mask_target.unsqueeze(0).unsqueeze(0)
|
63 |
+
|
64 |
+
X_dict = {
|
65 |
+
'source': {
|
66 |
+
'face_arc': arc_source,
|
67 |
+
'face_wide': wide_source * mask_source,
|
68 |
+
'face_wide_mask': mask_source
|
69 |
+
},
|
70 |
+
'target': {
|
71 |
+
'face_arc': arc_target,
|
72 |
+
'face_wide': wide_target * mask_target,
|
73 |
+
'face_wide_mask': mask_target
|
74 |
+
}
|
75 |
+
}
|
76 |
+
|
77 |
+
with torch.no_grad():
|
78 |
+
output = aligner(X_dict)
|
79 |
+
|
80 |
+
|
81 |
+
target_parsing = infer_parsing(wide_target)
|
82 |
+
pseudo_norm_target = calc_pseudo_target_bg(wide_target, target_parsing)
|
83 |
+
soft_mask = calc_mask(((output['fake_rgbs'] * output['fake_segm'])[0, [2, 1, 0], :, :] + 1) / 2)[None]
|
84 |
+
new_source = output['fake_rgbs'] * soft_mask[:, None, ...] + pseudo_norm_target * (1 - soft_mask[:, None, ...])
|
85 |
+
|
86 |
+
blender_input = {
|
87 |
+
'face_source': new_source, # output['fake_rgbs']*output['fake_segm'] + norm_target*(1-output['fake_segm']),# face_source,
|
88 |
+
'gray_source': rgb_to_grayscale(new_source[0][[2, 1, 0], ...]).unsqueeze(0),
|
89 |
+
'face_target': wide_target,
|
90 |
+
'mask_source': infer_parsing(output['fake_rgbs']*output['fake_segm']),
|
91 |
+
'mask_target': target_parsing,
|
92 |
+
'mask_source_noise': None,
|
93 |
+
'mask_target_noise': None,
|
94 |
+
'alpha_source': soft_mask
|
95 |
+
}
|
96 |
+
|
97 |
+
output_b = blender(blender_input, inpainter=inpainter)
|
98 |
+
|
99 |
+
np_output = np.uint8((output_b['oup'][0].detach().cpu().numpy().transpose((1, 2, 0))[:,:,::-1] / 2 + 0.5)*255)
|
100 |
+
result = copy_head_back(np_output, full_frame[..., ::-1], M)
|
101 |
+
return Image.fromarray(result)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
|
107 |
+
# Generator params
|
108 |
+
parser.add_argument('--config_a', default='./configs/aligner.yaml', type=str, help='Path to Aligner config')
|
109 |
+
parser.add_argument('--config_b', default='./configs/blender.yaml', type=str, help='Path to Blender config')
|
110 |
+
parser.add_argument('--source', default='./examples/images/hab.jpg', type=str, help='Path to source image')
|
111 |
+
parser.add_argument('--target', default='./examples/images/elon.jpg', type=str, help='Path to target image')
|
112 |
+
parser.add_argument('--ckpt_a', default='./aligner_checkpoints/aligner_1020_gaze_final.ckpt', type=str, help='Aligner checkpoint')
|
113 |
+
parser.add_argument('--ckpt_b', default='./blender_checkpoints/blender_lama.ckpt', type=str, help='Blender checkpoint')
|
114 |
+
parser.add_argument('--save_path', default='result.png', type=str, help='Path to save the result')
|
115 |
+
|
116 |
+
args = parser.parse_args()
|
117 |
+
|
118 |
+
with open(args.config_a, "r") as stream:
|
119 |
+
cfg_a = OmegaConf.load(stream)
|
120 |
+
|
121 |
+
with open(args.config_b, "r") as stream:
|
122 |
+
cfg_b = OmegaConf.load(stream)
|
123 |
+
|
124 |
+
aligner = AlignerModule(cfg_a)
|
125 |
+
ckpt = torch.load(args.ckpt_a, map_location='cpu')
|
126 |
+
aligner.load_state_dict(torch.load(args.ckpt_a), strict=False)
|
127 |
+
aligner.eval()
|
128 |
+
aligner.cuda()
|
129 |
+
|
130 |
+
blender = BlenderModule(cfg_b)
|
131 |
+
blender.load_state_dict(torch.load(args.ckpt_b, map_location='cpu')["state_dict"], strict=False,)
|
132 |
+
blender.eval()
|
133 |
+
blender.cuda()
|
134 |
+
|
135 |
+
inpainter = LamaInpainter()
|
136 |
+
|
137 |
+
app = FaceAnalysis(providers=['CUDAExecutionProvider'], allowed_modules=['detection'])
|
138 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
139 |
+
|
140 |
+
segment_model = StyleMatte()
|
141 |
+
segment_model.load_state_dict(
|
142 |
+
torch.load(
|
143 |
+
'./repos/stylematte/stylematte/checkpoints/stylematte_synth.pth',
|
144 |
+
map_location='cpu'
|
145 |
+
)
|
146 |
+
)
|
147 |
+
segment_model = segment_model.cuda()
|
148 |
+
segment_model.eval()
|
149 |
+
|
150 |
+
providers = [
|
151 |
+
("CUDAExecutionProvider", {})
|
152 |
+
]
|
153 |
+
parsings_session = ort.InferenceSession('./weights/segformer_B5_ce.onnx', providers=providers)
|
154 |
+
input_name = parsings_session.get_inputs()[0].name
|
155 |
+
output_names = [output.name for output in parsings_session.get_outputs()]
|
156 |
+
|
157 |
+
mean = np.array([0.51315393, 0.48064056, 0.46301059])[None, :, None, None]
|
158 |
+
std = np.array([0.21438347, 0.20799829, 0.20304542])[None, :, None, None]
|
159 |
+
|
160 |
+
infer_parsing = lambda img: torch.tensor(
|
161 |
+
parsings_session.run(output_names, {
|
162 |
+
input_name: (((img[:, [2, 1, 0], ...] / 2 + 0.5).cpu().detach().numpy() - mean) / std).astype(np.float32)
|
163 |
+
})[0],
|
164 |
+
device='cuda',
|
165 |
+
dtype=torch.float32
|
166 |
+
)
|
167 |
+
|
168 |
+
source_pil = Image.open(args.source)
|
169 |
+
target_pil = Image.open(args.target)
|
170 |
+
|
171 |
+
with gr.Blocks(css=css) as demo:
|
172 |
+
with gr.Column():
|
173 |
+
# gr.HTML(title)
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
with gr.Column():
|
177 |
+
input_source = gr.Image(
|
178 |
+
type="pil",
|
179 |
+
label="Input Source"
|
180 |
+
)
|
181 |
+
input_target = gr.Image(
|
182 |
+
type="pil",
|
183 |
+
label="Input Target"
|
184 |
+
)
|
185 |
+
run_button = gr.Button("Generate")
|
186 |
+
|
187 |
+
# with gr.Row():
|
188 |
+
# with gr.Column(scale=2):
|
189 |
+
# prompt_input = gr.Textbox(label="Prompt (Optional)")
|
190 |
+
# with gr.Column(scale=1):
|
191 |
+
# run_button = gr.Button("Generate")
|
192 |
+
|
193 |
+
# with gr.Row():
|
194 |
+
# target_ratio = gr.Radio(
|
195 |
+
# label="Expected Ratio",
|
196 |
+
# choices=["9:16", "16:9", "1:1", "Custom"],
|
197 |
+
# value="9:16",
|
198 |
+
# scale=2
|
199 |
+
# )
|
200 |
+
|
201 |
+
# alignment_dropdown = gr.Dropdown(
|
202 |
+
# choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
203 |
+
# value="Middle",
|
204 |
+
# label="Alignment"
|
205 |
+
# )
|
206 |
+
|
207 |
+
# with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
208 |
+
# with gr.Column():
|
209 |
+
# with gr.Row():
|
210 |
+
# width_slider = gr.Slider(
|
211 |
+
# label="Target Width",
|
212 |
+
# minimum=720,
|
213 |
+
# maximum=1536,
|
214 |
+
# step=8,
|
215 |
+
# value=720, # Set a default value
|
216 |
+
# )
|
217 |
+
# height_slider = gr.Slider(
|
218 |
+
# label="Target Height",
|
219 |
+
# minimum=720,
|
220 |
+
# maximum=1536,
|
221 |
+
# step=8,
|
222 |
+
# value=1280, # Set a default value
|
223 |
+
# )
|
224 |
+
|
225 |
+
# num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
226 |
+
# with gr.Group():
|
227 |
+
# overlap_percentage = gr.Slider(
|
228 |
+
# label="Mask overlap (%)",
|
229 |
+
# minimum=1,
|
230 |
+
# maximum=50,
|
231 |
+
# value=10,
|
232 |
+
# step=1
|
233 |
+
# )
|
234 |
+
# with gr.Row():
|
235 |
+
# overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
236 |
+
# overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
237 |
+
# with gr.Row():
|
238 |
+
# overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
239 |
+
# overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
240 |
+
# with gr.Row():
|
241 |
+
# resize_option = gr.Radio(
|
242 |
+
# label="Resize input image",
|
243 |
+
# choices=["Full", "50%", "33%", "25%", "Custom"],
|
244 |
+
# value="Full"
|
245 |
+
# )
|
246 |
+
# custom_resize_percentage = gr.Slider(
|
247 |
+
# label="Custom resize (%)",
|
248 |
+
# minimum=1,
|
249 |
+
# maximum=100,
|
250 |
+
# step=1,
|
251 |
+
# value=50,
|
252 |
+
# visible=False
|
253 |
+
# )
|
254 |
+
|
255 |
+
# with gr.Column():
|
256 |
+
# preview_button = gr.Button("Preview alignment and mask")
|
257 |
+
|
258 |
+
|
259 |
+
# gr.Examples(
|
260 |
+
# examples=[
|
261 |
+
# ["./examples/example_1.webp", 1280, 720, "Middle"],
|
262 |
+
# ["./examples/example_2.jpg", 1440, 810, "Left"],
|
263 |
+
# ["./examples/example_3.jpg", 1024, 1024, "Top"],
|
264 |
+
# ["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
265 |
+
# ],
|
266 |
+
# inputs=[input_image, width_slider, height_slider, alignment_dropdown],
|
267 |
+
# )
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
with gr.Column():
|
272 |
+
result = ImageSlider(
|
273 |
+
interactive=False,
|
274 |
+
label="Generated Image",
|
275 |
+
)
|
276 |
+
# use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
277 |
+
|
278 |
+
# history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
279 |
+
# preview_image = gr.Image(label="Preview")
|
280 |
+
gr.on(
|
281 |
+
trigger=[run_button.click],
|
282 |
+
fn=infer_headswap,
|
283 |
+
inputs=[input_source, input_target],
|
284 |
+
outputs=[result]
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
demo.launch()
|