Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files- app.py +22 -49
- app_mcp.py +129 -0
- search.py +30 -0
- semantic_search.py +0 -41
- table.py +1 -1
app.py
CHANGED
@@ -4,8 +4,9 @@ import gradio as gr
|
|
4 |
import polars as pl
|
5 |
from gradio_modal import Modal
|
6 |
|
|
|
7 |
from app_pr import demo as demo_pr
|
8 |
-
from
|
9 |
from table import df_orig
|
10 |
|
11 |
DESCRIPTION = "# ICLR 2025"
|
@@ -59,10 +60,7 @@ df_main = df_orig.select(
|
|
59 |
|
60 |
df_main = df_main.with_columns(
|
61 |
[
|
62 |
-
pl.when(pl.col(col) == "").then(None).otherwise(pl.col(col))
|
63 |
-
.cast(pl.Int64)
|
64 |
-
.fill_null(0)
|
65 |
-
.alias(col)
|
66 |
for col in ["upvotes", "num_comments"]
|
67 |
]
|
68 |
)
|
@@ -120,32 +118,25 @@ def update_num_papers(df: pl.DataFrame) -> str:
|
|
120 |
|
121 |
|
122 |
def update_df(
|
123 |
-
search_mode: str,
|
124 |
search_query: str,
|
125 |
candidate_pool_size: int,
|
126 |
-
|
127 |
presentation_type: str,
|
128 |
column_names: list[str],
|
129 |
-
case_insensitive: bool = True,
|
130 |
) -> gr.Dataframe:
|
|
|
|
|
|
|
131 |
df = df_main.clone()
|
132 |
column_names = ["Title", *column_names]
|
133 |
|
134 |
if search_query:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
try:
|
139 |
-
df = df.filter(pl.col("Title").str.contains(search_query))
|
140 |
-
except pl.exceptions.ComputeError as e:
|
141 |
-
raise gr.Error(str(e)) from e
|
142 |
else:
|
143 |
-
|
144 |
-
|
145 |
-
df = df.head(0)
|
146 |
-
else:
|
147 |
-
df = pl.DataFrame({"paper_id": paper_ids, "score": scores}).join(df, on="paper_id", how="inner")
|
148 |
-
df = df.sort("score", descending=True).drop("score")
|
149 |
|
150 |
if presentation_type != "(ALL)":
|
151 |
df = df.filter(pl.col("Type").str.contains(presentation_type))
|
@@ -159,10 +150,6 @@ def update_df(
|
|
159 |
)
|
160 |
|
161 |
|
162 |
-
def update_search_mode(search_mode: str) -> gr.Accordion:
|
163 |
-
return gr.Accordion(visible=search_mode == "Semantic Search")
|
164 |
-
|
165 |
-
|
166 |
def df_row_selected(
|
167 |
evt: gr.SelectData,
|
168 |
) -> tuple[
|
@@ -186,21 +173,11 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
186 |
gr.Markdown(DESCRIPTION)
|
187 |
with gr.Accordion(label="Tutorial", open=True):
|
188 |
gr.Markdown(TUTORIAL)
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
show_label=False,
|
195 |
-
info="Note: Semantic search consumes your ZeroGPU quota.",
|
196 |
-
)
|
197 |
-
search_query = gr.Textbox(label="Search", submit_btn=True, show_label=False, placeholder="Enter query here")
|
198 |
-
with gr.Accordion(label="Advanced Search Options", open=False) as advanced_search_options:
|
199 |
-
with gr.Row():
|
200 |
-
candidate_pool_size = gr.Slider(
|
201 |
-
label="Candidate Pool Size", minimum=1, maximum=1000, step=1, value=300
|
202 |
-
)
|
203 |
-
score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.01, value=0.5)
|
204 |
|
205 |
presentation_type = gr.Radio(
|
206 |
label="Presentation Type",
|
@@ -231,19 +208,12 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
231 |
title = gr.Textbox(label="Title")
|
232 |
abstract = gr.Textbox(label="Abstract")
|
233 |
|
234 |
-
search_mode.change(
|
235 |
-
fn=update_search_mode,
|
236 |
-
inputs=search_mode,
|
237 |
-
outputs=advanced_search_options,
|
238 |
-
)
|
239 |
-
|
240 |
df.select(fn=df_row_selected, outputs=[abstract_modal, title, abstract])
|
241 |
|
242 |
inputs = [
|
243 |
-
search_mode,
|
244 |
search_query,
|
245 |
candidate_pool_size,
|
246 |
-
|
247 |
presentation_type,
|
248 |
column_names,
|
249 |
]
|
@@ -277,10 +247,13 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
277 |
api_name=False,
|
278 |
)
|
279 |
|
|
|
|
|
|
|
280 |
|
281 |
with demo.route("Open PR"):
|
282 |
demo_pr.render()
|
283 |
|
284 |
|
285 |
if __name__ == "__main__":
|
286 |
-
demo.
|
|
|
4 |
import polars as pl
|
5 |
from gradio_modal import Modal
|
6 |
|
7 |
+
from app_mcp import demo as demo_mcp
|
8 |
from app_pr import demo as demo_pr
|
9 |
+
from search import search
|
10 |
from table import df_orig
|
11 |
|
12 |
DESCRIPTION = "# ICLR 2025"
|
|
|
60 |
|
61 |
df_main = df_main.with_columns(
|
62 |
[
|
63 |
+
pl.when(pl.col(col) == "").then(None).otherwise(pl.col(col)).cast(pl.Int64).fill_null(0).alias(col)
|
|
|
|
|
|
|
64 |
for col in ["upvotes", "num_comments"]
|
65 |
]
|
66 |
)
|
|
|
118 |
|
119 |
|
120 |
def update_df(
|
|
|
121 |
search_query: str,
|
122 |
candidate_pool_size: int,
|
123 |
+
num_results: int,
|
124 |
presentation_type: str,
|
125 |
column_names: list[str],
|
|
|
126 |
) -> gr.Dataframe:
|
127 |
+
if num_results > candidate_pool_size:
|
128 |
+
raise gr.Error("Number of results must be less than or equal to candidate pool size", print_exception=False)
|
129 |
+
|
130 |
df = df_main.clone()
|
131 |
column_names = ["Title", *column_names]
|
132 |
|
133 |
if search_query:
|
134 |
+
results = search(search_query, candidate_pool_size, num_results)
|
135 |
+
if not results:
|
136 |
+
df = df.head(0)
|
|
|
|
|
|
|
|
|
137 |
else:
|
138 |
+
df = pl.DataFrame(results).join(df, on="paper_id", how="inner")
|
139 |
+
df = df.sort("ce_score", descending=True).drop("ce_score")
|
|
|
|
|
|
|
|
|
140 |
|
141 |
if presentation_type != "(ALL)":
|
142 |
df = df.filter(pl.col("Type").str.contains(presentation_type))
|
|
|
150 |
)
|
151 |
|
152 |
|
|
|
|
|
|
|
|
|
153 |
def df_row_selected(
|
154 |
evt: gr.SelectData,
|
155 |
) -> tuple[
|
|
|
173 |
gr.Markdown(DESCRIPTION)
|
174 |
with gr.Accordion(label="Tutorial", open=True):
|
175 |
gr.Markdown(TUTORIAL)
|
176 |
+
search_query = gr.Textbox(label="Search", submit_btn=True, show_label=False, placeholder="Search...")
|
177 |
+
with gr.Accordion(label="Advanced Search Options", open=False) as advanced_search_options:
|
178 |
+
with gr.Row():
|
179 |
+
candidate_pool_size = gr.Slider(label="Candidate Pool Size", minimum=1, maximum=600, step=1, value=200)
|
180 |
+
num_results = gr.Slider(label="Number of Results", minimum=1, maximum=400, step=1, value=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
presentation_type = gr.Radio(
|
183 |
label="Presentation Type",
|
|
|
208 |
title = gr.Textbox(label="Title")
|
209 |
abstract = gr.Textbox(label="Abstract")
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
df.select(fn=df_row_selected, outputs=[abstract_modal, title, abstract])
|
212 |
|
213 |
inputs = [
|
|
|
214 |
search_query,
|
215 |
candidate_pool_size,
|
216 |
+
num_results,
|
217 |
presentation_type,
|
218 |
column_names,
|
219 |
]
|
|
|
247 |
api_name=False,
|
248 |
)
|
249 |
|
250 |
+
with gr.Row(visible=False):
|
251 |
+
demo_mcp.render()
|
252 |
+
|
253 |
|
254 |
with demo.route("Open PR"):
|
255 |
demo_pr.render()
|
256 |
|
257 |
|
258 |
if __name__ == "__main__":
|
259 |
+
demo.launch(mcp_server=True)
|
app_mcp.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import polars as pl
|
3 |
+
|
4 |
+
from search import search
|
5 |
+
from table import df_orig
|
6 |
+
|
7 |
+
COLUMNS_MCP = [
|
8 |
+
"title",
|
9 |
+
"authors",
|
10 |
+
"abstract",
|
11 |
+
"openreview_url",
|
12 |
+
"arxiv_id",
|
13 |
+
"paper_page",
|
14 |
+
"space_ids",
|
15 |
+
"model_ids",
|
16 |
+
"dataset_ids",
|
17 |
+
"upvotes",
|
18 |
+
"num_comments",
|
19 |
+
"project_page",
|
20 |
+
"github",
|
21 |
+
"row_index",
|
22 |
+
]
|
23 |
+
DEFAULT_COLUMNS_MCP = [
|
24 |
+
"title",
|
25 |
+
"authors",
|
26 |
+
"abstract",
|
27 |
+
"openreview_url",
|
28 |
+
"arxiv_id",
|
29 |
+
"project_page",
|
30 |
+
"github",
|
31 |
+
"row_index",
|
32 |
+
]
|
33 |
+
|
34 |
+
df_mcp = df_orig.rename({"openreview": "openreview_url", "paper_id": "row_index"}).select(COLUMNS_MCP)
|
35 |
+
|
36 |
+
|
37 |
+
def search_papers(
|
38 |
+
search_query: str,
|
39 |
+
candidate_pool_size: int,
|
40 |
+
num_results: int,
|
41 |
+
columns: list[str],
|
42 |
+
) -> list[dict]:
|
43 |
+
"""Searches ICLR 2025 papers relevant to a user query in English.
|
44 |
+
|
45 |
+
This function performs a semantic search over ICLR 2025 papers.
|
46 |
+
It uses a dual-stage retrieval process:
|
47 |
+
- First, it retrieves `candidate_pool_size` papers using dense vector similarity.
|
48 |
+
- Then, it re-ranks them with a cross-encoder model to select the top `num_results` most relevant papers.
|
49 |
+
- The search results are returned as a list of dictionaries.
|
50 |
+
|
51 |
+
Note:
|
52 |
+
The search query must be written in English. Queries in other languages are not supported.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
search_query (str): The natural language query input by the user. Must be in English.
|
56 |
+
candidate_pool_size (int): Number of candidate papers to retrieve using the dense vector model.
|
57 |
+
num_results (int): Final number of top-ranked papers to return after re-ranking.
|
58 |
+
columns (list[str]): The columns to select from the DataFrame.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
list[dict]: A list of dictionaries of the top-ranked papers matching the query, sorted by relevance.
|
62 |
+
"""
|
63 |
+
if not search_query:
|
64 |
+
raise ValueError("Search query cannot be empty")
|
65 |
+
if num_results > candidate_pool_size:
|
66 |
+
raise ValueError("Number of results must be less than or equal to candidate pool size")
|
67 |
+
|
68 |
+
df = df_mcp.clone()
|
69 |
+
results = search(search_query, candidate_pool_size, num_results)
|
70 |
+
df = pl.DataFrame(results).rename({"paper_id": "row_index"}).join(df, on="row_index", how="inner")
|
71 |
+
df = df.sort("ce_score", descending=True)
|
72 |
+
return df.select(columns).to_dicts()
|
73 |
+
|
74 |
+
|
75 |
+
def get_metadata(row_index: int) -> dict:
|
76 |
+
"""Returns a dictionary of metadata for a ICLR 2025 paper at the given table row index.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
row_index (int): The index of the paper in the internal paper list table.
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
dict: A dictionary containing metadata for the corresponding paper.
|
83 |
+
"""
|
84 |
+
return df_mcp.filter(pl.col("row_index") == row_index).to_dicts()[0]
|
85 |
+
|
86 |
+
|
87 |
+
def get_table(columns: list[str]) -> list[dict]:
|
88 |
+
"""Returns a list of dictionaries of all ICLR 2025 papers.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
columns (list[str]): The columns to select from the DataFrame.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
list[dict]: A list of dictionaries of all ICLR 2025 papers.
|
95 |
+
"""
|
96 |
+
return df_mcp.select(columns).to_dicts()
|
97 |
+
|
98 |
+
|
99 |
+
with gr.Blocks() as demo:
|
100 |
+
search_query = gr.Textbox(label="Search", submit_btn=True)
|
101 |
+
candidate_pool_size = gr.Slider(label="Candidate Pool Size", minimum=1, maximum=500, step=1, value=200)
|
102 |
+
num_results = gr.Slider(label="Number of Results", minimum=1, maximum=400, step=1, value=100)
|
103 |
+
column_names = gr.CheckboxGroup(label="Columns", choices=COLUMNS_MCP, value=DEFAULT_COLUMNS_MCP)
|
104 |
+
row_index = gr.Slider(label="Row Index", minimum=0, maximum=len(df_mcp) - 1, step=1, value=0)
|
105 |
+
|
106 |
+
out = gr.JSON()
|
107 |
+
|
108 |
+
search_papers_btn = gr.Button("Search Papers")
|
109 |
+
get_metadata_btn = gr.Button("Get Metadata")
|
110 |
+
get_table_btn = gr.Button("Get Table")
|
111 |
+
|
112 |
+
search_papers_btn.click(
|
113 |
+
fn=search_papers,
|
114 |
+
inputs=[search_query, candidate_pool_size, num_results, column_names],
|
115 |
+
outputs=out,
|
116 |
+
)
|
117 |
+
get_metadata_btn.click(
|
118 |
+
fn=get_metadata,
|
119 |
+
inputs=row_index,
|
120 |
+
outputs=out,
|
121 |
+
)
|
122 |
+
get_table_btn.click(
|
123 |
+
fn=get_table,
|
124 |
+
inputs=column_names,
|
125 |
+
outputs=out,
|
126 |
+
)
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
demo.launch(mcp_server=True)
|
search.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import numpy as np
|
3 |
+
import spaces
|
4 |
+
from sentence_transformers import CrossEncoder, SentenceTransformer
|
5 |
+
|
6 |
+
from table import BASE_REPO_ID
|
7 |
+
|
8 |
+
ds = datasets.load_dataset(BASE_REPO_ID, split="train")
|
9 |
+
ds.add_faiss_index(column="embedding")
|
10 |
+
|
11 |
+
bi_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
12 |
+
ce_model = CrossEncoder("BAAI/bge-reranker-base")
|
13 |
+
|
14 |
+
|
15 |
+
@spaces.GPU(duration=10)
|
16 |
+
def search(query: str, candidate_pool_size: int = 100, retrieval_k: int = 50) -> list[dict]:
|
17 |
+
prefix = "Represent this sentence for searching relevant passages: "
|
18 |
+
q_vec = bi_model.encode(prefix + query, normalize_embeddings=True)
|
19 |
+
|
20 |
+
_, retrieved_ds = ds.get_nearest_examples("embedding", q_vec, k=candidate_pool_size)
|
21 |
+
|
22 |
+
ce_inputs = [
|
23 |
+
(query, f"{retrieved_ds['title'][i]} {retrieved_ds['abstract'][i]}") for i in range(len(retrieved_ds["title"]))
|
24 |
+
]
|
25 |
+
ce_scores = ce_model.predict(ce_inputs, batch_size=16)
|
26 |
+
|
27 |
+
sorted_idx = np.argsort(ce_scores)[::-1]
|
28 |
+
return [
|
29 |
+
{"paper_id": retrieved_ds["paper_id"][i], "ce_score": float(ce_scores[i])} for i in sorted_idx[:retrieval_k]
|
30 |
+
]
|
semantic_search.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
import numpy as np
|
3 |
-
import scipy.spatial
|
4 |
-
import scipy.special
|
5 |
-
import spaces
|
6 |
-
from sentence_transformers import CrossEncoder, SentenceTransformer
|
7 |
-
|
8 |
-
from table import BASE_REPO_ID
|
9 |
-
|
10 |
-
ds = datasets.load_dataset(BASE_REPO_ID, split="train")
|
11 |
-
ds = ds.rename_column("submission_number", "paper_id")
|
12 |
-
ds.add_faiss_index(column="embedding")
|
13 |
-
|
14 |
-
model = SentenceTransformer("all-MiniLM-L6-v2")
|
15 |
-
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
16 |
-
|
17 |
-
|
18 |
-
@spaces.GPU(duration=5)
|
19 |
-
def semantic_search(
|
20 |
-
query: str, candidate_pool_size: int = 300, score_threshold: float = 0.5
|
21 |
-
) -> tuple[list[int], list[float]]:
|
22 |
-
query_vec = model.encode(query)
|
23 |
-
_, retrieved_data = ds.get_nearest_examples("embedding", query_vec, k=candidate_pool_size)
|
24 |
-
|
25 |
-
rerank_inputs = [
|
26 |
-
[query, f"{title}\n{abstract}"]
|
27 |
-
for title, abstract in zip(retrieved_data["title"], retrieved_data["abstract"], strict=True)
|
28 |
-
]
|
29 |
-
rerank_scores = reranker.predict(rerank_inputs)
|
30 |
-
sorted_indices = np.argsort(rerank_scores)[::-1]
|
31 |
-
|
32 |
-
paper_ids = []
|
33 |
-
scores = []
|
34 |
-
for i in sorted_indices:
|
35 |
-
score = float(scipy.special.expit(rerank_scores[i]))
|
36 |
-
if score < score_threshold:
|
37 |
-
break
|
38 |
-
paper_ids.append(retrieved_data["paper_id"][i])
|
39 |
-
scores.append(score)
|
40 |
-
|
41 |
-
return paper_ids, scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
table.py
CHANGED
@@ -61,7 +61,7 @@ def format_author_claim_ratio(row: dict) -> str:
|
|
61 |
df_orig = (
|
62 |
datasets.load_dataset(BASE_REPO_ID, split="train")
|
63 |
.to_polars()
|
64 |
-
.rename({"paper_url": "openreview"
|
65 |
.with_columns(
|
66 |
pl.lit([], dtype=pl.List(pl.Utf8)).alias(col_name) for col_name in ["space_ids", "model_ids", "dataset_ids"]
|
67 |
)
|
|
|
61 |
df_orig = (
|
62 |
datasets.load_dataset(BASE_REPO_ID, split="train")
|
63 |
.to_polars()
|
64 |
+
.rename({"paper_url": "openreview"})
|
65 |
.with_columns(
|
66 |
pl.lit([], dtype=pl.List(pl.Utf8)).alias(col_name) for col_name in ["space_ids", "model_ids", "dataset_ids"]
|
67 |
)
|