Spaces:
Running
on
Zero
Running
on
Zero
import datasets | |
import numpy as np | |
import scipy.spatial | |
import scipy.special | |
import spaces | |
from sentence_transformers import CrossEncoder, SentenceTransformer | |
from table import BASE_REPO_ID | |
ds = datasets.load_dataset(BASE_REPO_ID, split="train") | |
ds = ds.rename_column("submission_number", "paper_id") | |
ds.add_faiss_index(column="embedding") | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
def semantic_search(query: str, candidate_pool_size: int = 100, score_threshold: float = 0.7) -> list[int]: | |
query_vec = model.encode(query) | |
_, retrieved_data = ds.get_nearest_examples("embedding", query_vec, k=candidate_pool_size) | |
rerank_inputs = [ | |
[query, f"{title}\n{abstract}"] | |
for title, abstract in zip(retrieved_data["title"], retrieved_data["abstract"], strict=True) | |
] | |
rerank_scores = reranker.predict(rerank_inputs) | |
sorted_indices = np.argsort(rerank_scores)[::-1] | |
return [ | |
retrieved_data["paper_id"][i] | |
for i in sorted_indices | |
if scipy.special.expit(rerank_scores[i]) >= score_threshold | |
] | |