File size: 5,777 Bytes
d06d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python

import gradio as gr
import polars as pl

from app_pr import demo as demo_pr
from table import df_orig

DESCRIPTION = "# ICLR 2025"

TUTORIAL = """\
#### Claiming Authorship for Papers on arXiv

If your ICLR 2025 paper is available on arXiv and listed in the table below, you can claim authorship by following these steps:

1. Find your paper in the table.
2. Click the link to the paper page in the table.
3. On that page, click your name.
4. Click **"Claim authorship"**.
    - You'll be redirected to the *Papers* section of your Settings.
5. Confirm the request on the redirected page.

The admin team will review your request shortly.
Once confirmed, your paper page will be marked as verified, and you'll be able to add a project page and a GitHub repository.

If you need further help, check out the [guide here](https://huggingface.co/docs/hub/paper-pages).


#### Updating Missing or Incorrect Information in the Table

If you notice any missing or incorrect information in the table, feel free to submit a PR via the "Open PR" page, which you can find at the top right of this page.
"""

# TODO: remove this once https://github.com/gradio-app/gradio/issues/10916 https://github.com/gradio-app/gradio/issues/11001 https://github.com/gradio-app/gradio/issues/11002 are fixed  # noqa: TD002, FIX002
NOTE = """\
Note: Sorting by upvotes or comments may not work correctly due to a known bug in Gradio.
"""


df_main = df_orig.select(
    "title",
    "authors_str",
    "openreview_md",
    "type",
    "paper_page_md",
    "upvotes",
    "num_comments",
    "project_page_md",
    "github_md",
    "Spaces",
    "Models",
    "Datasets",
    "claimed",
)

df_main = df_main.rename(
    {
        "title": "Title",
        "authors_str": "Authors",
        "openreview_md": "OpenReview",
        "type": "Type",
        "paper_page_md": "Paper page",
        "upvotes": "👍",
        "num_comments": "💬",
        "project_page_md": "Project page",
        "github_md": "GitHub",
    }
)

COLUMN_INFO = {
    "Title": ("str", "40%"),
    "Authors": ("str", "20%"),
    "Type": ("str", None),
    "Paper page": ("markdown", "135px"),
    "👍": ("number", "50px"),
    "💬": ("number", "50px"),
    "OpenReview": ("markdown", None),
    "Project page": ("markdown", None),
    "GitHub": ("markdown", None),
    "Spaces": ("markdown", None),
    "Models": ("markdown", None),
    "Datasets": ("markdown", None),
    "claimed": ("markdown", None),
}


DEFAULT_COLUMNS = [
    "Title",
    "Type",
    "Paper page",
    "👍",
    "💬",
    "OpenReview",
    "Project page",
    "GitHub",
    "Spaces",
    "Models",
]


def update_num_papers(df: pl.DataFrame) -> str:
    if "claimed" in df.columns:
        return f"{len(df)} / {len(df_main)} ({df.select(pl.col('claimed').str.contains('✅').sum()).item()} claimed)"
    return f"{len(df)} / {len(df_main)}"


def update_df(
    title_search_query: str,
    presentation_type: str,
    column_names: list[str],
    case_insensitive: bool = True,
) -> gr.Dataframe:
    df = df_main.clone()
    column_names = ["Title", *column_names]

    if title_search_query:
        if case_insensitive:
            title_search_query = f"(?i){title_search_query}"
        try:
            df = df.filter(pl.col("Title").str.contains(title_search_query))
        except pl.exceptions.ComputeError as e:
            raise gr.Error(str(e)) from e
    if presentation_type != "(ALL)":
        df = df.filter(pl.col("Type").str.contains(presentation_type))

    sorted_column_names = [col for col in COLUMN_INFO if col in column_names]
    df = df.select(sorted_column_names)
    return gr.Dataframe(
        value=df,
        datatype=[COLUMN_INFO[col][0] for col in sorted_column_names],
        column_widths=[COLUMN_INFO[col][1] for col in sorted_column_names],
    )


with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Accordion(label="Tutorial", open=True):
        gr.Markdown(TUTORIAL)
    with gr.Group():
        search_title = gr.Textbox(label="Search title")
        presentation_type = gr.Radio(
            label="Presentation Type",
            choices=["(ALL)", "Oral", "Spotlight", "Poster"],
            value="(ALL)",
        )
        column_names = gr.CheckboxGroup(
            label="Columns",
            choices=[col for col in COLUMN_INFO if col != "Title"],
            value=[col for col in DEFAULT_COLUMNS if col != "Title"],
        )

    num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(df_orig), interactive=False)

    gr.Markdown(NOTE)
    df = gr.Dataframe(
        value=df_main,
        datatype=list(COLUMN_INFO.values()),
        type="polars",
        row_count=(0, "dynamic"),
        show_row_numbers=True,
        interactive=False,
        max_height=1000,
        elem_id="table",
        column_widths=[COLUMN_INFO[col][1] for col in COLUMN_INFO],
    )

    inputs = [
        search_title,
        presentation_type,
        column_names,
    ]
    gr.on(
        triggers=[
            search_title.submit,
            presentation_type.input,
            column_names.input,
        ],
        fn=update_df,
        inputs=inputs,
        outputs=df,
        api_name=False,
    ).then(
        fn=update_num_papers,
        inputs=df,
        outputs=num_papers,
        queue=False,
        api_name=False,
    )
    demo.load(
        fn=update_df,
        inputs=inputs,
        outputs=df,
        api_name=False,
    ).then(
        fn=update_num_papers,
        inputs=df,
        outputs=num_papers,
        queue=False,
        api_name=False,
    )


with demo.route("Open PR"):
    demo_pr.render()


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False)