Spaces:
Sleeping
Sleeping
File size: 1,033 Bytes
8fc65e7 564a3c1 6060e42 8fc65e7 b51e5c7 6060e42 6505bf3 6060e42 b51e5c7 3c56661 b51e5c7 3c56661 b51e5c7 3c56661 b51e5c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import openai
import os
import streamlit as st
openai.api_key = os.getenv("OPENAI_API_KEY")
from langchain.document_loaders import PyPDFLoader
st.title("AI Chatbot")
uploaded_file = st.file_uploader("Choose a file")
def extract(uploaded_file):
res = []
loader = PyPDFLoader(link)
pages = loader.load()
for i in pages:
res.append(i.page_content.replace('\n',''))
a = " ".join(res)
return a
context = extract(uploaded_file)
def lang(ques):
docs = Document(page_content=context)
index2 = VectorstoreIndexCreator().from_documents([docs])
answer = index2.query(llm = model, question = ques)
index2.vectorstore.delete_collection()
return answer
def qna(uploaded_file,ques):
session_state['answer']= lang(jury_url)
st.title("Jury Records")
ques= st.text_area(label= "Please enter the Question that you wanna ask.",
placeholder="Question")
st.text_area("result", value=session_state['answer'])
st.button("Get answer dictionary", on_click=qna, args=[ques]) |