Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,11 @@ from PIL import Image
|
|
3 |
import numpy as np
|
4 |
from transformers import SamModel, SamProcessor
|
5 |
from diffusers import AutoPipelineForInpainting
|
6 |
-
from diffusers.models.autoencoders.vq_model import VQEncoderOutput, VQModel
|
7 |
import torch
|
8 |
|
9 |
-
#
|
10 |
-
device = "cpu"
|
|
|
11 |
|
12 |
# Model and Processor setup
|
13 |
model_name = "facebook/sam-vit-huge"
|
@@ -15,14 +15,14 @@ model = SamModel.from_pretrained(model_name).to(device)
|
|
15 |
processor = SamProcessor.from_pretrained(model_name)
|
16 |
|
17 |
def mask_to_rgb(mask):
|
|
|
18 |
bg_transparent = np.zeros(mask.shape + (4,), dtype=np.uint8)
|
19 |
-
bg_transparent[mask == 1] = [0, 255, 0, 127]
|
20 |
return bg_transparent
|
21 |
|
22 |
-
def get_processed_inputs(image,
|
23 |
-
|
24 |
-
|
25 |
-
inputs = processor(image, input_points=input_points, return_tensors="pt").to(device)
|
26 |
with torch.no_grad():
|
27 |
outputs = model(**inputs)
|
28 |
masks = processor.image_processor.post_process_masks(
|
@@ -34,12 +34,15 @@ def get_processed_inputs(image, points_str):
|
|
34 |
return ~best_mask.cpu().numpy()
|
35 |
|
36 |
def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536, cfgs=7):
|
|
|
37 |
mask_image = Image.fromarray(input_mask)
|
38 |
rand_gen = torch.manual_seed(seed)
|
39 |
pipeline = AutoPipelineForInpainting.from_pretrained(
|
40 |
-
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
image = pipeline(
|
44 |
prompt=prompt,
|
45 |
image=raw_image,
|
@@ -50,7 +53,9 @@ def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536,
|
|
50 |
).images[0]
|
51 |
return image
|
52 |
|
53 |
-
def gradio_interface(image,
|
|
|
|
|
54 |
raw_image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
55 |
mask = get_processed_inputs(raw_image, points)
|
56 |
processed_image = inpaint(raw_image, mask, positive_prompt, negative_prompt)
|
@@ -60,7 +65,7 @@ iface = gr.Interface(
|
|
60 |
fn=gradio_interface,
|
61 |
inputs=[
|
62 |
gr.Image(type="numpy", label="Input Image"),
|
63 |
-
gr.
|
64 |
gr.Textbox(label="Positive Prompt", placeholder="Enter positive prompt here"),
|
65 |
gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here")
|
66 |
],
|
@@ -69,7 +74,7 @@ iface = gr.Interface(
|
|
69 |
gr.Image(label="Segmentation Mask")
|
70 |
],
|
71 |
title="Interactive Image Inpainting",
|
72 |
-
description="
|
73 |
)
|
74 |
|
75 |
iface.launch(share=True)
|
|
|
3 |
import numpy as np
|
4 |
from transformers import SamModel, SamProcessor
|
5 |
from diffusers import AutoPipelineForInpainting
|
|
|
6 |
import torch
|
7 |
|
8 |
+
# Check if GPU is available, otherwise use CPU
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
print(f"Using device: {device}")
|
11 |
|
12 |
# Model and Processor setup
|
13 |
model_name = "facebook/sam-vit-huge"
|
|
|
15 |
processor = SamProcessor.from_pretrained(model_name)
|
16 |
|
17 |
def mask_to_rgb(mask):
|
18 |
+
""" Convert binary mask to RGB with transparency for the background. """
|
19 |
bg_transparent = np.zeros(mask.shape + (4,), dtype=np.uint8)
|
20 |
+
bg_transparent[mask == 1] = [0, 255, 0, 127] # Green mask with some transparency
|
21 |
return bg_transparent
|
22 |
|
23 |
+
def get_processed_inputs(image, points):
|
24 |
+
""" Process the input image and points using SAM model and processor. """
|
25 |
+
inputs = processor(image, input_points=points, return_tensors="pt").to(device)
|
|
|
26 |
with torch.no_grad():
|
27 |
outputs = model(**inputs)
|
28 |
masks = processor.image_processor.post_process_masks(
|
|
|
34 |
return ~best_mask.cpu().numpy()
|
35 |
|
36 |
def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536, cfgs=7):
|
37 |
+
""" Inpaint the masked area in the image using a text prompt and an inpainting pipeline. """
|
38 |
mask_image = Image.fromarray(input_mask)
|
39 |
rand_gen = torch.manual_seed(seed)
|
40 |
pipeline = AutoPipelineForInpainting.from_pretrained(
|
41 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
42 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
43 |
+
).to(device)
|
44 |
+
if device == "cpu":
|
45 |
+
pipeline.enable_model_cpu_offload()
|
46 |
image = pipeline(
|
47 |
prompt=prompt,
|
48 |
image=raw_image,
|
|
|
53 |
).images[0]
|
54 |
return image
|
55 |
|
56 |
+
def gradio_interface(image, points_json, positive_prompt, negative_prompt):
|
57 |
+
""" Gradio interface function to handle image, points for segmentation, and prompts. """
|
58 |
+
points = [[(point['x'], point['y']) for point in stroke['points']] for stroke in points_json]
|
59 |
raw_image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
60 |
mask = get_processed_inputs(raw_image, points)
|
61 |
processed_image = inpaint(raw_image, mask, positive_prompt, negative_prompt)
|
|
|
65 |
fn=gradio_interface,
|
66 |
inputs=[
|
67 |
gr.Image(type="numpy", label="Input Image"),
|
68 |
+
gr.Image(type="json", label="Click to select points", tool="sketch", brush_radius=1, shape=(512, 512)),
|
69 |
gr.Textbox(label="Positive Prompt", placeholder="Enter positive prompt here"),
|
70 |
gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here")
|
71 |
],
|
|
|
74 |
gr.Image(label="Segmentation Mask")
|
75 |
],
|
76 |
title="Interactive Image Inpainting",
|
77 |
+
description="Click on the image to select points for segmentation, provide prompts, and see the inpainted result."
|
78 |
)
|
79 |
|
80 |
iface.launch(share=True)
|