Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +61 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import SamModel, SamProcessor
|
| 5 |
+
from diffusers import AutoPipelineForInpainting
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
# Model setup
|
| 9 |
+
device = "cuda"
|
| 10 |
+
model_name = "facebook/sam-vit-huge"
|
| 11 |
+
model = SamModel.from_pretrained(model_name).to(device)
|
| 12 |
+
processor = SamProcessor.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
def mask_to_rgb(mask):
|
| 15 |
+
bg_transparent = np.zeros(mask.shape + (4,), dtype=np.uint8)
|
| 16 |
+
bg_transparent[mask == 1] = [0, 255, 0, 127]
|
| 17 |
+
return bg_transparent
|
| 18 |
+
|
| 19 |
+
def get_processed_inputs(image, points):
|
| 20 |
+
input_points = [[list(map(int, point.split(',')))] for point in points.split('|') if point]
|
| 21 |
+
inputs = processor(image, input_points, return_tensors="pt").to(device)
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
outputs = model(**inputs)
|
| 24 |
+
masks = processor.image_processor.post_process_masks(
|
| 25 |
+
outputs.pred_masks.cpu(),
|
| 26 |
+
inputs["original_sizes"].cpu(),
|
| 27 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 28 |
+
)
|
| 29 |
+
best_mask = masks[0][0][outputs.iou_scores.argmax()]
|
| 30 |
+
return ~best_mask.cpu().numpy()
|
| 31 |
+
|
| 32 |
+
def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536, cfgs=7):
|
| 33 |
+
mask_image = Image.fromarray(input_mask)
|
| 34 |
+
rand_gen = torch.manual_seed(seed)
|
| 35 |
+
pipeline = AutoPipelineForInpainting.from_pretrained(
|
| 36 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16
|
| 37 |
+
)
|
| 38 |
+
pipeline.enable_model_cpu_offload()
|
| 39 |
+
image = pipeline(
|
| 40 |
+
prompt=prompt,
|
| 41 |
+
image=raw_image,
|
| 42 |
+
mask_image=mask_image,
|
| 43 |
+
guidance_scale=cfgs,
|
| 44 |
+
negative_prompt=negative_prompt,
|
| 45 |
+
generator=rand_gen
|
| 46 |
+
).images[0]
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
+
# Gradio Interface with Click Events
|
| 50 |
+
def gradio_interface(image, points):
|
| 51 |
+
raw_image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
| 52 |
+
mask = get_processed_inputs(raw_image, points)
|
| 53 |
+
processed_image = inpaint(raw_image, mask, "a car driving on Mars. Studio lights, 1970s", "artifacts, low quality, distortion")
|
| 54 |
+
return processed_image, mask_to_rgb(mask)
|
| 55 |
+
|
| 56 |
+
iface = gr.Interface(
|
| 57 |
+
fn=gradio_interface,
|
| 58 |
+
inputs=["image", gr.Image(shape=(512, 512), image_mode='RGB', source="canvas", tool="sketch")],
|
| 59 |
+
outputs=["image", "image"]
|
| 60 |
+
)
|
| 61 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
diffusers
|
| 5 |
+
numpy
|
| 6 |
+
Pillow
|