Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from PIL import Image
|
|
3 |
import numpy as np
|
4 |
from transformers import SamModel, SamProcessor
|
5 |
from diffusers import AutoPipelineForInpainting
|
|
|
6 |
import torch
|
7 |
|
8 |
# Check if GPU is available, otherwise use CPU
|
@@ -15,16 +16,14 @@ model = SamModel.from_pretrained(model_name).to(device)
|
|
15 |
processor = SamProcessor.from_pretrained(model_name)
|
16 |
|
17 |
def mask_to_rgb(mask):
|
18 |
-
""" Convert binary mask to RGB with transparency for the background. """
|
19 |
bg_transparent = np.zeros(mask.shape + (4,), dtype=np.uint8)
|
20 |
-
bg_transparent[mask == 1] = [0, 255, 0, 127]
|
21 |
return bg_transparent
|
22 |
|
23 |
-
def get_processed_inputs(image,
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
inputs = processor(images=image, return_tensors="pt").to(device)
|
28 |
with torch.no_grad():
|
29 |
outputs = model(**inputs)
|
30 |
masks = processor.image_processor.post_process_masks(
|
@@ -36,7 +35,6 @@ def get_processed_inputs(image, annotation):
|
|
36 |
return ~best_mask.cpu().numpy()
|
37 |
|
38 |
def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536, cfgs=7):
|
39 |
-
""" Inpaint the masked area in the image using a text prompt and an inpainting pipeline. """
|
40 |
mask_image = Image.fromarray(input_mask)
|
41 |
rand_gen = torch.manual_seed(seed)
|
42 |
pipeline = AutoPipelineForInpainting.from_pretrained(
|
@@ -55,10 +53,9 @@ def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536,
|
|
55 |
).images[0]
|
56 |
return image
|
57 |
|
58 |
-
def gradio_interface(image,
|
59 |
-
""" Gradio interface function to handle image, annotated drawing, and prompts. """
|
60 |
raw_image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
61 |
-
mask = get_processed_inputs(raw_image,
|
62 |
processed_image = inpaint(raw_image, mask, positive_prompt, negative_prompt)
|
63 |
return processed_image, mask_to_rgb(mask)
|
64 |
|
@@ -66,7 +63,7 @@ iface = gr.Interface(
|
|
66 |
fn=gradio_interface,
|
67 |
inputs=[
|
68 |
gr.Image(type="numpy", label="Input Image"),
|
69 |
-
gr.
|
70 |
gr.Textbox(label="Positive Prompt", placeholder="Enter positive prompt here"),
|
71 |
gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here")
|
72 |
],
|
@@ -75,7 +72,7 @@ iface = gr.Interface(
|
|
75 |
gr.Image(label="Segmentation Mask")
|
76 |
],
|
77 |
title="Interactive Image Inpainting",
|
78 |
-
description="
|
79 |
)
|
80 |
|
81 |
iface.launch(share=True)
|
|
|
3 |
import numpy as np
|
4 |
from transformers import SamModel, SamProcessor
|
5 |
from diffusers import AutoPipelineForInpainting
|
6 |
+
from diffusers.models.autoencoders.vq_model import VQEncoderOutput, VQModel
|
7 |
import torch
|
8 |
|
9 |
# Check if GPU is available, otherwise use CPU
|
|
|
16 |
processor = SamProcessor.from_pretrained(model_name)
|
17 |
|
18 |
def mask_to_rgb(mask):
|
|
|
19 |
bg_transparent = np.zeros(mask.shape + (4,), dtype=np.uint8)
|
20 |
+
bg_transparent[mask == 1] = [0, 255, 0, 127]
|
21 |
return bg_transparent
|
22 |
|
23 |
+
def get_processed_inputs(image, points_str):
|
24 |
+
points = [list(map(int, point.split(','))) for point in points_str.split()]
|
25 |
+
input_points = [points]
|
26 |
+
inputs = processor(image, input_points=input_points, return_tensors="pt").to(device)
|
|
|
27 |
with torch.no_grad():
|
28 |
outputs = model(**inputs)
|
29 |
masks = processor.image_processor.post_process_masks(
|
|
|
35 |
return ~best_mask.cpu().numpy()
|
36 |
|
37 |
def inpaint(raw_image, input_mask, prompt, negative_prompt=None, seed=74294536, cfgs=7):
|
|
|
38 |
mask_image = Image.fromarray(input_mask)
|
39 |
rand_gen = torch.manual_seed(seed)
|
40 |
pipeline = AutoPipelineForInpainting.from_pretrained(
|
|
|
53 |
).images[0]
|
54 |
return image
|
55 |
|
56 |
+
def gradio_interface(image, points, positive_prompt, negative_prompt):
|
|
|
57 |
raw_image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
58 |
+
mask = get_processed_inputs(raw_image, points)
|
59 |
processed_image = inpaint(raw_image, mask, positive_prompt, negative_prompt)
|
60 |
return processed_image, mask_to_rgb(mask)
|
61 |
|
|
|
63 |
fn=gradio_interface,
|
64 |
inputs=[
|
65 |
gr.Image(type="numpy", label="Input Image"),
|
66 |
+
gr.Textbox(label="Points (format: x1,y1 x2,y2 ...)", placeholder="e.g., 100,100 200,200"),
|
67 |
gr.Textbox(label="Positive Prompt", placeholder="Enter positive prompt here"),
|
68 |
gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here")
|
69 |
],
|
|
|
72 |
gr.Image(label="Segmentation Mask")
|
73 |
],
|
74 |
title="Interactive Image Inpainting",
|
75 |
+
description="Enter points as 'x1,y1 x2,y2 ...' for segmentation, provide prompts, and see the inpainted result."
|
76 |
)
|
77 |
|
78 |
iface.launch(share=True)
|