import json import os from datetime import datetime from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"): """ Run perplexity evaluation and save results. """ try: # Run evaluation perplexity_score = evaluate_perplexity(model_name, revision) # Create result structure result = create_perplexity_result(model_name, revision, precision, perplexity_score) # Save result file timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") result_filename = f"results_{model_name.replace('/', '_')}_{timestamp}.json" # Create directory structure org, model = model_name.split("/") if "/" in model_name else ("", model_name) result_dir = os.path.join(EVAL_RESULTS_PATH, org) if org else EVAL_RESULTS_PATH os.makedirs(result_dir, exist_ok=True) result_path = os.path.join(result_dir, result_filename) with open(result_path, "w") as f: json.dump(result, f, indent=2) # Upload to Hugging Face dataset API.upload_file( path_or_fileobj=result_path, path_in_repo=result_path.split("eval-results/")[1], repo_id=RESULTS_REPO, repo_type="dataset", commit_message=f"Add perplexity results for {model_name}", ) return True, perplexity_score except Exception as e: return False, str(e)