Ahmed Ahmed
Add model-tracing code for p-value computation (without binary files)
de071e9
import torch
from tracing.perm.permute import permute_model
from scripts.perm.main import p_value_exact, p_value_approx
def statistic(base_model, ft_model, mc_stat, l2_stat, num_perm, emb_dim=4096, mlp_dim=11008):
unperm_stat_mc = mc_stat(base_model, ft_model)
unperm_stat_l2 = l2_stat(base_model, ft_model)
print(unperm_stat_mc, unperm_stat_l2)
perm_stats_mc = []
perm_stats_l2 = []
for i in range(num_perm):
mlp_permutation = torch.randperm(mlp_dim)
emb_permutation = torch.randperm(emb_dim)
permute_model(ft_model, mlp_permutation, emb_permutation)
perm_stat_mc = mc_stat(base_model, ft_model)
perm_stat_l2 = l2_stat(base_model, ft_model)
perm_stats_mc.append(perm_stat_mc)
perm_stats_l2.append(perm_stat_l2)
print(i, perm_stat_mc, perm_stat_l2)
exact_mc = p_value_exact(unperm_stat_mc, perm_stats_mc.copy())
approx_mc = p_value_approx(unperm_stat_mc, perm_stats_mc.copy())
exact_l2 = p_value_exact(unperm_stat_l2, perm_stats_l2.copy())
approx_l2 = p_value_approx(unperm_stat_l2, perm_stats_l2.copy())
print(exact_mc, approx_mc)
print(exact_l2, approx_l2)
return (
exact_mc,
approx_mc,
exact_l2,
approx_l2,
unperm_stat_mc,
unperm_stat_l2,
perm_stats_mc,
perm_stats_l2,
)