Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
| import os | |
| from datasets import load_dataset | |
| from tqdm import tqdm | |
| import math | |
| import matplotlib.pyplot as plt | |
| import csv | |
| from utils import interpolate_models | |
| import time | |
| import copy | |
| import argparse | |
| import glob | |
| block_size = 512 | |
| def group_texts(examples): | |
| # Concatenate all texts. | |
| concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} | |
| total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
| # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can | |
| # customize this part to your needs. | |
| total_length = (total_length // block_size) * block_size | |
| # Split by chunks of max_len. | |
| result = { | |
| k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
| for k, t in concatenated_examples.items() | |
| } | |
| result["labels"] = result["input_ids"].copy() | |
| return result | |
| def main(args): | |
| start_time = time.time() | |
| # Automatically detect CUDA device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| os.environ["WANDB_MODE"] = "disabled" | |
| # Load models and tokenizer | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| model_list = [ | |
| "meta-llama/Llama-2-7b-hf", | |
| "codellama/CodeLlama-7b-hf", | |
| "lmsys/vicuna-7b-v1.5", | |
| "EleutherAI/llemma_7b", | |
| "LLM360/Amber", | |
| ] | |
| model_pairs = [ | |
| (0, 2), # LLama2, Vicuna-1.5 | |
| (0, 1), # LLama2, CodeLlama | |
| (0, 3), # LLama2, Lemma | |
| (1, 3), # CodeLlama, Lemma | |
| (0, 4), # LLama2, Amber | |
| ] | |
| models = [ | |
| AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
| for model_name in model_list | |
| ] | |
| tokenizer = AutoTokenizer.from_pretrained(models[0].config._name_or_path) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # Scan the directory for JSON files based on the test name argument | |
| columns_ignored = [ | |
| "text", | |
| "added", | |
| "id", | |
| "lang", | |
| "metadata", | |
| "source", | |
| "timestamp", | |
| "subdomain", | |
| ] | |
| json_dir = f"/juice4/scr4/nlp/model-tracing/dolma_program_languages/json_files_{args.test_name}" | |
| json_files = glob.glob(f"{json_dir}/*.json") | |
| save_dir = f"/juice4/scr4/nlp/model-tracing/dolma_program_languages/results_{args.test_name}" | |
| if not os.path.exists(save_dir): | |
| os.makedirs(save_dir) | |
| for json_file in json_files: | |
| print(f"Processing {json_file}") | |
| # Prepare dataset | |
| eval_dataset = load_dataset("json", data_files=json_file) | |
| def tokenize_function(examples): | |
| return tokenizer(examples["text"]) | |
| tokenized_datasets = eval_dataset.map( | |
| tokenize_function, batched=True, num_proc=4, remove_columns=columns_ignored | |
| ) | |
| lm_datasets = tokenized_datasets.map( | |
| group_texts, | |
| batched=True, | |
| batch_size=1, | |
| num_proc=1, | |
| ) | |
| # Prepare for evaluation. Batch size is optimized for ~7B model | |
| training_args = TrainingArguments( | |
| output_dir="./results", | |
| per_device_eval_batch_size=3, | |
| do_eval=True, | |
| report_to=None, | |
| dataloader_num_workers=4, | |
| use_cpu=True, | |
| ) | |
| alphas = [0.0, 0.3, 0.5, 0.7, 1.0] | |
| model = copy.deepcopy(models[0]) | |
| trainer = Trainer(model=model, args=training_args, eval_dataset=lm_datasets) | |
| print("create data loader") | |
| eval_dataloader = trainer.get_test_dataloader(lm_datasets["train"]) | |
| for idx_a, idx_b in tqdm(model_pairs, desc="Model Interpolation"): | |
| model_a = models[idx_a] | |
| model_b = models[idx_b] | |
| perplexities = [] | |
| model_a_name = model_a.config._name_or_path.split("/")[-1] | |
| model_b_name = model_b.config._name_or_path.split("/")[-1] | |
| for alpha in tqdm( | |
| alphas, desc=f" \n Alpha Perplexities for {model_a_name} and {model_b_name}" | |
| ): | |
| interpolated_model = interpolate_models(model_a, model_b, alpha) | |
| # cast to bfloat16 before GPU | |
| interpolated_model = interpolated_model.half().to(device) | |
| start_time = time.time() | |
| losses = [] | |
| for batch in tqdm(eval_dataloader, desc=f"\n Evaluating {alpha}"): | |
| # HF Trainer finds GPU by default | |
| input_ids = batch["input_ids"].to(device) | |
| attention_mask = batch["attention_mask"].to(device) | |
| labels = batch["labels"].to(device) | |
| outputs = interpolated_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| labels=labels, | |
| ) | |
| loss = outputs.loss | |
| losses.append(loss.item()) | |
| loss_mean = sum(losses) / len(losses) | |
| print(f"Loss mean: {loss_mean}") | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| print(f"Execution time base: {execution_time} seconds") | |
| perplexity = math.exp(loss_mean) | |
| perplexities.append(perplexity) | |
| # Move the model back to CPU | |
| interpolated_model.to("cpu") | |
| # Clear the GPU cache | |
| del interpolated_model, input_ids, attention_mask, labels, outputs, loss | |
| torch.cuda.empty_cache() | |
| # Save perplexities and model names to CSV | |
| json_filename = os.path.splitext(os.path.basename(json_file))[0] | |
| csv_filename = f"perplexities_{json_filename}.csv" | |
| csv_full_path = f"{save_dir}/{csv_filename}" | |
| csv_header = ["Model Pair"] + [f"Alpha {alpha}" for alpha in alphas] | |
| if not os.path.exists(csv_full_path): | |
| with open(csv_full_path, "w", newline="") as csvfile: | |
| writer = csv.writer(csvfile) | |
| writer.writerow(csv_header) | |
| with open(csv_full_path, "a", newline="") as csvfile: | |
| writer = csv.writer(csvfile) | |
| model_pair = f"{model_a_name} vs {model_b_name}" | |
| row = [model_pair] + perplexities | |
| writer.writerow(row) | |
| # Create the plot | |
| plt.figure(figsize=(8, 6)) | |
| plt.plot(alphas, perplexities) | |
| plt.xlabel("Alpha") | |
| plt.ylabel("Perplexity") | |
| plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)") | |
| # Save the plot as a PNG file | |
| plot_filename = ( | |
| f"alpha_vs_perplexity_{model_a_name}_vs_{model_b_name}_{json_filename}.png" | |
| ) | |
| plot_full_path = f"{save_dir}/{plot_filename}" | |
| plt.savefig(plot_full_path, dpi=300, bbox_inches="tight") | |
| plt.close() | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| print(f"Total execution time: {execution_time} seconds") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Model Interpolation") | |
| parser.add_argument( | |
| "--test_name", type=str, default="js", help="Test name (e.g., cpp, python, js)" | |
| ) | |
| args = parser.parse_args() | |
| main(args) | |