Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard | |
| import pandas as pd | |
| from huggingface_hub import snapshot_download, create_repo | |
| from huggingface_hub.utils import RepositoryNotFoundError | |
| import os | |
| from src.about import ( | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| AutoEvalColumn, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER | |
| from src.populate import get_leaderboard_df | |
| from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval | |
| def init_leaderboard(dataframe): | |
| if dataframe is None: | |
| raise ValueError("Leaderboard DataFrame is None.") | |
| print("\n=== Initializing Leaderboard ===", flush=True) | |
| print(f"DataFrame shape: {dataframe.shape}", flush=True) | |
| print(f"DataFrame columns: {dataframe.columns.tolist()}", flush=True) | |
| return Leaderboard( | |
| value=dataframe, | |
| select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden], | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| filter_columns=[ | |
| AutoEvalColumn.model_type.name, | |
| AutoEvalColumn.precision.name, | |
| ], | |
| ) | |
| def run_perplexity_test(model_name, revision, precision): | |
| """Run perplexity evaluation on demand.""" | |
| import sys | |
| import traceback | |
| import gradio as gr | |
| if not model_name: | |
| return "Please enter a model name." | |
| try: | |
| # Use stderr for more reliable logging in HF Spaces | |
| sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n") | |
| sys.stderr.write(f"Model: {model_name}\n") | |
| sys.stderr.write(f"Revision: {revision}\n") | |
| sys.stderr.write(f"Precision: {precision}\n") | |
| sys.stderr.flush() | |
| success, result = run_dynamic_perplexity_eval(model_name, revision, precision) | |
| sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n") | |
| sys.stderr.flush() | |
| if success: | |
| sys.stderr.write("Evaluation succeeded - results saved to dataset\n") | |
| sys.stderr.flush() | |
| return f"""β **Perplexity evaluation completed successfully!** | |
| **Model**: {model_name} | |
| **Perplexity Score**: {result:.4f} | |
| π **Results have been saved to the dataset.** | |
| π **To see your results in the leaderboard:** | |
| 1. Click on the **π Leaderboard** tab above | |
| 2. Refresh the page (Ctrl+R or Cmd+R) | |
| 3. Your model should now appear in the rankings! | |
| π‘ **Note**: Due to technical limitations with the leaderboard component, results cannot be updated dynamically. The refresh is necessary to see the latest rankings.""" | |
| else: | |
| return f"β **Evaluation failed**: {result}" | |
| except Exception as e: | |
| error_msg = str(e) | |
| traceback_str = traceback.format_exc() | |
| sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n") | |
| sys.stderr.write(f"Traceback: {traceback_str}\n") | |
| sys.stderr.flush() | |
| return f"β **Critical error**: {error_msg}" | |
| # Initialize results repository and directory | |
| try: | |
| # Try to download existing repository | |
| try: | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, | |
| local_dir=EVAL_RESULTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| token=TOKEN | |
| ) | |
| except RepositoryNotFoundError: | |
| # Create the repository if it doesn't exist | |
| print(f"Creating new results repository: {RESULTS_REPO}") | |
| create_repo( | |
| repo_id=RESULTS_REPO, | |
| repo_type="dataset", | |
| private=False, | |
| token=TOKEN | |
| ) | |
| # Create local directory | |
| os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
| except Exception as e: | |
| print(f"Error initializing results: {e}") | |
| # Ensure local directory exists even if repo operations fail | |
| os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
| # Get initial leaderboard data | |
| LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
| # Create the Gradio interface | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π Leaderboard", elem_id="leaderboard-tab", id=0): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.TabItem("π About", elem_id="about-tab", id=1): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2): | |
| gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2") | |
| revision = gr.Textbox(label="Revision", placeholder="main", value="main") | |
| precision = gr.Dropdown( | |
| choices=["float16", "bfloat16"], | |
| label="Precision", | |
| value="float16" | |
| ) | |
| debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True) | |
| with gr.Column(): | |
| test_button = gr.Button("π Run Perplexity Test", variant="primary") | |
| result = gr.Markdown() | |
| gr.Markdown(""" | |
| ### Tips: | |
| - **Check stderr logs** in HF Spaces for detailed debugging information | |
| - **After evaluation completes**, click the π Leaderboard tab and refresh the page to see results | |
| - **Example models to test**: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`, `openai-community/gpt2-large` | |
| - **Lower perplexity scores = better performance** (better at predicting text) | |
| ### How it works: | |
| 1. Enter a model name from Hugging Face Hub | |
| 2. Click "Run Perplexity Test" | |
| 3. Wait for evaluation to complete (may take a few minutes for large models) | |
| 4. Go to π Leaderboard tab and refresh the page to see your results! | |
| """) | |
| test_button.click( | |
| run_perplexity_test, | |
| [model_name, revision, precision], | |
| [result] | |
| ) | |
| demo.queue(default_concurrency_limit=5).launch() |