File size: 5,651 Bytes
359f755
 
 
 
 
 
 
 
 
 
 
 
77c0f20
359f755
 
 
 
 
 
 
77c0f20
 
 
359f755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c0f20
359f755
77c0f20
 
359f755
 
 
 
 
 
 
77c0f20
 
359f755
 
 
 
 
 
77c0f20
 
 
 
 
 
 
 
 
 
 
 
 
359f755
 
 
 
 
 
 
 
 
 
 
 
 
 
77c0f20
 
 
 
 
 
 
359f755
 
 
77c0f20
 
359f755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import glob
import json
import math
import os
from dataclasses import dataclass

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub

@dataclass
class EvalResult:
    """Represents one perplexity evaluation result."""
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.PT  # Default to pretrained
    weight_type: WeightType = WeightType.Original
    architecture: str = "Unknown"
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract perplexity result
        results = {}
        if "perplexity" in data["results"]:
            results["perplexity"] = data["results"]["perplexity"]["perplexity"]

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        # Calculate average, handling perplexity (lower is better)
        scores = []
        for task in Tasks:
            if task.value.benchmark in self.results:
                score = self.results[task.value.benchmark]
                # Convert perplexity to a 0-100 scale where lower perplexity = higher score
                # Using a log scale since perplexity can vary widely
                # Cap at 100 for very low perplexity and 0 for very high perplexity
                score = max(0, min(100, 100 * (1 - math.log(score) / 10)))
                scores.append(score)
        
        average = sum(scores) / len(scores) if scores else 0
        
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in Tasks:
            benchmark = task.value.benchmark
            if benchmark in self.results:
                score = self.results[benchmark]
                # Store original perplexity score (lower is better)
                data_dict[task.value.col_name] = score
            else:
                data_dict[task.value.col_name] = None

        return data_dict

def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all perplexity results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results